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Introduction

Tests of general relativity provide crucial observational evidence supporting
Einstein's theory. The first three classical tests, proposed by Albert
Einstein in 1915, concern:

@ the anomalous precession of the perihelion of Mercury,

o the deflection of light by a gravitational field, and

@ the gravitational redshift of light.
The advance (or precession) of Mercury's perihelion is one of the most
famous phenomena that confirmed Einstein’s general theory of relativity.
In this work, we aim to use Maple software to solve the orbital equation of

a planet and obtain the solution that describes the relativistic advance of
its perihelion.
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What is the perihelion?

,,,,,

For a planet orbiting the N S =S D
Sun, the perihelion is the . 3 A
point of closest approach to - T
the Sun.

Figure: 1. Planet at aphelion 2. Planet at
perihelion 3. Sun. (Photo taken from Wikipedia)

@ In Newtonian mechanics, the orbit of a planet around the Sun is an
ellipse (according to Kepler's first law) that remains fixed in space,
the perihelion does not move.

@ However, observations, particularly for Mercury, reveal that this
elliptical orbit slowly rotates over time: the perihelion advances
slightly after each revolution. This phenomenon is known as the
advance (or precession) of the perihelion.
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Background: Relativistic Motion Near the Sun

@ In general relativity, the Sun’s gravity is not described as a force
acting in flat space. Instead, the Sun's mass curves the surrounding
spacetime, and Mercury follows a geodesic, the natural path of
motion, within this curved geometry.

@ The Schwarzschild metric provides the exact solution of Einstein's
field equations describing the spacetime outside a static, spherically
symmetric, and non-rotating mass M.

We define a quantity [1]
2K = gpxxP = a, (1)
where « is a constant characterising the nature of the geodesic:

0, for a null (lightlike) geodesic,
2K =a =< +1, for a timlike geodesic,

—1, for a spacelike geodesic,
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N
The Schwarzschild Metric

Here, the dot denotes differentiation with respect to an affine parameter,
which is chosen to be the proper time 7 for timelike trajectories.
A convenient form of the geodesic equation can then be written as

OK d (0K
axa_dT(axa):O’ a=0,...3 (2)

We can study the orbit of a test particle (e.g., a planet) around the Sun by
considering geodesic motion in the Schwarzschild metric. The quantity 2K
is given by

R\ . R\ . .
2K = <1 — r) 2 — <1 — ) 2 — r?0% — r’sin?(0)¢? = 2, (3)

r
where Ry = 2(’;—’;/’ is the Schwarzschild radius of the central mass (the Sun).

CELTERS MW G VB e AR M WSTSMMVRR N Using Differential Equations with Maple in Ge November 05, 2025 6/18



-
The Euler-Lagrange Equations

Applying the Euler-Lagrange equations to the coordinates x? = (t, r, 0, ¢)
gives the following relations for a = 0,2 and 3.

2102 =0 “
% (r29> — r?sinfcosh (;'52 =0. (5)
dL’T (r2 sin® 6 (b) =0. (6)

Motion in the Equatorial Plane

In Newtonian mechanics, a planet moves in a fixed plane. We now
examine whether this remains true in general relativity.

Assume that the motion takes place in the equatorial plane, such that

0(r0) = g and (o) = 0. (7)

From Eq. (5), it follows that
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The Euler-Lagrange Equations

4 (rzé) =0= r%)
dr

Since 9(70) = 0, the constant is zero, and therefore § = 0.

Hence, the motion is confined to the equatorial plane (0 = 7)
throughout the trajectory, just as in the Newtonian case.

This proves that geodesic trajectories in Schwarzschild spacetime must be

planar. Then (6) gives

— r?0
-

—0=— r?4| =0. (8)

T0 T

5
r?¢ = h, (9)

where h is a constant. Equation (9) expresses the conservation of angular

momentum, with h representing the angular momentum per unit mass of

the planet.
(1 - RS) P—E, (10)
r

Similarly, equation (4) gives
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Change of variable

where E is another constant of motion, associated with the conservation
of energy.

Substituting these two integrals of motion into Eq. (3), we obtain

—1 -1
E2c? 1—& - 1—& 2 — 2% = 2. 11
. ¢

r

To study the shape of the orbit r(¢), it is convenient to introduce the
variable
u=-—. (12)

r

Since we are not interested in the proper time 7 but rather in how r varies
with ¢, we use ¢ as the independent variable in the orbital equation.
From (9), we have

1 u

- > (13)
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Orbital Equation

and
. do . . du
= h® = = h® = i = hui>—. 14
¢ = hu y u U u 4o (14)
Combining these expressions gives
du
F=—h—r1. 15
F= g (15)

Substituting these relations into Eq. (11) yields

d 2
E2¢2(1— Rou) ™' — (1 — Reu) ' #? (d;> — Ru? =2 (16)

After straightforward simplification, we obtain the first-order differential
equation governing the orbit:
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Orbital Equation

du\ 2 E2 —1)c® R.c2
(d;) +u2:( e ) + hg u+ Reud. (17)

Equation (17) represents the relativistic orbital equation for a planet
moving in the Schwarzschild geometry.

We now apply an approximate method to solve the orbital equation.
Differentiating Eq. (17) with respect to ¢, we obtain

du Rsc®> 3
W‘FU: 2h2 +§R5U2. (18)

This is the relativistic form of Binet’'s equation. It differs from the
classical (Newtonian) version by the presence of the additional term %Rsu
on the right-hand side, which represents the general relativistic
correction responsible for the precession of the perihelion.

2
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Orbital Equation

If we neglect this second term, Eq. (18) reduces to the Newtonian
orbital equation:

Z;Z tu= zshcj. (19)
Its solution corresponds to a Keplerian ellipse:
R.c2
u(¢) = T (14 ecos¢). (20)

e is the excentricity of the ellipse.

Since the Schwarzschild radius Rs of the Sun is extremely small compared
to the orbital radius of a planet, we expect that the general relativistic
corrections to the Newtonian motion are very weak. Consequently, the
orbit remains approximately elliptical, but with a subtle precession of
the perihelion after each revolution.
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In Newtonian mechanics, the orbit of a planet around the Sun is a closed
ellipse. However, in general relativity, the additional term %Rsu2 in Eq.
(18) slightly perturbs this motion, causing the ellipse to rotate slowly
within its plane. This means that the perihelion advances by a small angle
after each orbit.

By solving Eq. (18) perturbatively, treating the relativistic term as a small
correction to the Newtonian solution, one finds that the angular shift of
the perihelion per revolution is given by [2]:

Ap— 6w GM

S i) )

where
@ ais the semi-major axis of the orbit,
@ e is the excentricity of the orbit, and
@ M is the mass of the central body (the Sun in this case).
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Application to Mercury planet

Applying to the planet Mercury, we have
e a=0.57909 x 10" m
e e =0.206,
e My = 1.989 x 103%g.

Substituting in (21), we find

A¢ = 5.015568339 x 10~ 'radians/revolution (22)
= 0.1034535232 arcsecond/revolution, (23)
Since Mercury completes approximately
365.25
100 x 87 97 ~ 415 revolutions per century, (24)

the cumulative precession is A¢ ~ 43" per century.

This value agrees remarkably well with the observed anomalous

precession of Mercury’s perihelion, providing one of the most

celebrated confirmations of Einstein’s general theory of relativity.
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Application to Mercury planet

Equation (18) can be solved numericaIIy using the dsolve command in
Maple to obtain the function u(¢) = (¢) which describes the trajectory
of the planet in the Schwarzschild spacetime.

The goal of this numerical integration is to determine the shape of the
orbit and, in particular, the position of the perihelion, corresponding to the
minimum value of r (or equivalently, the maximum of u).

To locate this point, we note that at the perihelion,

dr
do

Since r(¢) = u(¢),, this condition is equivalent to

—0. (25)

du

CELTERS MW G VB e AR M WSTSMMVRR N Using Differential Equations with Maple in Ge November 05, 2025 15/18



|
Numerical Results with Maple

Thus, in the numerical solution, we can identify the angular position ¢ = 0
where this derivative vanishes at the point of closest approach.
In practice, this is implemented in a simple Maple worksheet as follows:

@ Define the differential equation (18) for u(¢).

@ Specify appropriate initial conditions, such as u(0) = up and
‘%‘0 = 0, corresponding to the perihelion.

© Use the dsolve command with the numeric option to integrate the
equation over several orbital periods.

@ Extract the successive maxima of u(¢) (or minima of r(¢)) to
determine the angular shift of the perihelion after each revolution.

This numerical approach provides a direct and illustrative way to confirm
the analytical prediction of the relativistic advance of the perihelion.
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Numerical Results with Maple
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The plots of r(¢) and u(¢) exhibit small periodic variations. Over short
timescales, the precession of the orbit is extremely small and therefore not
easily visible in the plots.
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Conclusion

o Using Maple 2018, we have numerically and analytically studied one
of the most famous tests of general relativity: the relativistic
precession of Mercury’s perihelion.

@ The computed results are in excellent agreement with both the
analytical formula and astronomical observations, beautifully
illustrating how the curvature of spacetime explains phenomena that
cannot be accounted for by Newtonian mechanics.
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