Mathematical Experiments for Mathematics Majors

Michael Monagan Simon Fraser University

Maple Conference 2025

Michael Monagan 1

MACM 204-2 Computing with Calculus using Maple

Prerequisites: Integral Calculus and Programming 1.

Goals

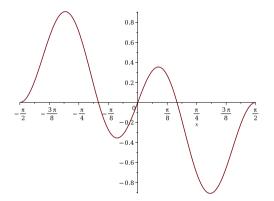
- 1 Practice programming skills on mathematics problems.
- 2 Review Calculus and apply it to realistic problems.
- 3 Use visualization tools to understand/present mathematics.
- 4 Learn to do mathematical experiments.
- 5 Master the software package for use in other courses/career.
- 6 Modelling (systems of ODEs) e.g. the SIR model.

Six experiments, one per assignment, requires programming.

Michael Monagan

1: Checking theorems

```
Theorem \int_{-\pi/2}^{\pi/2} \sin(mx) \cos(nx) dx = 0 for all nonnegative integers m > 0 and n > 0.
```

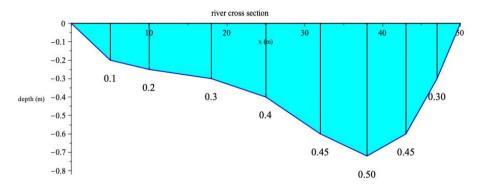

(a) Use Maple to check it for $1 \le m \le 5$ and $1 \le n \le 5$.

I found this unsatisfactory because ...

Michael Monagan 3/8

(b) Now graph $\sin(mx)\cos(nx)$ on $-\pi/2 \le x \le \pi/2$ for m=2,3 and n=2,3 and explain why they are orthogonal.

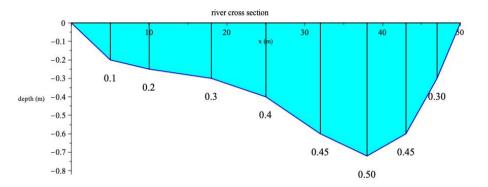
> plot(sin(3*x)*cos(2*x),x=-Pi/2..Pi/2);



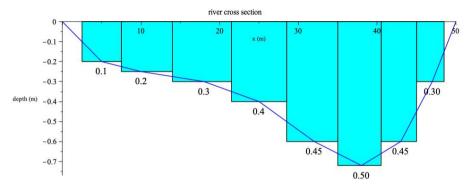
The integral is zero because $\sin(mx)\cos(nx)$ simplifies to a sum of sine functions, which are odd. The integral of an odd function over a symmetric interval $[-\pi, \pi]$ is always zero.

Michael Monagan

4/8


3: Measuring river flow (discharge)

distance x m	0	5	10	18	25	32	38	43	47	50
depth <i>d m</i>	0.0	0.2	0.25	0.3	0.4	0.6	0.72	0.6	0.3	0.0
velocity v m/s	0.0	0.1	0.2	0.3	0.4	0.45	0.5	0.45	0.30	0.0


Michael Monagan 5/8

3: Measuring river flow (discharge)

Method 1: Using trapezoids and velocity averages

Michael Monagan

Method 2: Using midpoint rectangles and velocites Which approximation is best?

Flow = $\int_{a}^{b} v(x)d(x)dx \ m^3/s$ where d(x) is the depth and v(x) is the velocity at x.

Michael Monagan

7/8

- 2 Prime number races (Granville and Martin)
- 4 Random walks in the plane
- 5 Visualizing eigenvalues and eigenvectors
- 6 Simulating a 30 year mortgage
- 7 Simulating vaccination in the SIR model to determine herd immunity

Questions

Michael Monagan 8 /