
Data Structure
Tips And Tricks

Darin Ohashi
• Senior Architect at Maplesoft

Working Example

• Read and analyze words from a text file

Working Example

• Read and analyze words from a text file
• Don't know anything about the input

▪ Don’t know which words will appear
▪ Don't know how many words

Working Example

• Read and analyze words from a text file
• Don't know anything about the input

▪ Don’t know which words will appear
▪ Don't know how many words

• Unknowns mean we need dynamic data structures
▪ Array

▪ 1D, index starting at 1
▪ Table

Working Example

Read all the words

do

word := FileTools:-Text:-ReadString("input_file"):

if word = NULL then

break

end:

end:

Read all the words

• Store the words in a dynamic
Array.

• Create an empty Array by
calling the Array constructor
with an empty list

A := Array([]):

do

word := FileTools:-Text:-ReadString("input_file"):
if word = NULL then

break

end:

end:

Read all the words

• Store the words in a dynamic
Array

• Create an empty Array by
calling the Array constructor
with an empty list

• Use ArrayTools:-Append to add
elements to the Array

A := Array([]):

do

word := FileTools:-Text:-ReadString("input_file"):
if word = NULL then

break

end:
ArrayTools:-Append(A, word):

end:

Read all the words

How many words numelems(A);

Read all the words

How many words numelems(A);

First word A[1];

Read all the words

How many words numelems(A);

First word A[1];

First 10 words A[1..10];

Read all the words

How many words numelems(A);

First word A[1];

First 10 words A[1..10];

Last word A[-1];

Read all the words

How many words numelems(A);

First word A[1];

First 10 words A[1..10];

Last word A[-1];

Last 10 words A[-10..-1];

Read all the words

How many words numelems(A);

First word A[1];

First 10 words A[1..10];

Last word A[-1];

Last 10 words A[-10..-1];

Was word in the document? found := false;
for w in A
do
 if w = word then
 found := true;
 break;
 end;
end;

Read all the words

How many words numelems(A);

First word A[1];

First 10 words A[1..10];

Last word A[-1];

Last 10 words A[-10..-1];

Was word in the document?

• Use member(word, A)!

found := false;
for w in A
do
 if w = word then
 found := true;
 break;
 end;
end;

Array Operations
• Arrays work with basic maple functions

▪ map, seq, add, sort, etc
• ArrayTools

▪ Extend, Insert, Remove
▪ Higher level algorithms, Partition, Reverse, etc

Array Performance
• Performance of Array operations

▪ Append/Extend and Remove from the end of the Array take, on average, time proportional to the
number of elements added or removed. Often this is going to be constant time.

▪ Insert/Remove from the middle of an Array requires moving all the elements after the position of
the change, so these will be proportional to the number of elements in the Array.

• For the best performance add and remove elements from the back of the Array.
• As Arrays can be modified, many function support inplace operations

▪ If you don’t need the original data, working inplace saves memory.
▪ map[inplace](f, A) (aka transform)
▪ sort[inplace](A)

• One I recently discovered:
▪ map[reduce=NULL](print, A) (aka foreach)

Unique Words

• Use a table
▪ In other languages: dictionary,

map

• Stores key/value pairs
• Constant time operations

▪ Insert
▪ Delete
▪ Has

T := table():

do

word := FileTools:-Text:-ReadString("input_file"):
if word = NULL then

break

end:

end:

Unique Words

• Use a table
▪ In other languages: dictionary,

map

• Stores key/value pairs
• Constant time operations

▪ Insert
▪ Remove
▪ Has

• Don't need to use a value
▪ Dynamic set

T:= table():
do

word := FileTools:-Text:-ReadString("input_file"):
if word = NULL then

break

end:
T[word] := NULL:

end:

Unique Words

How many unique words numelems(T);

Unique Words

How many unique words numelems(T);

List unique words [indices(T)];

Unique Words

How many unique words numelems(T);

List unique words [indices(T)];

Was word in the document? assigned(T[word]);

Unique Words

How many unique words numelems(T);

List unique words [indices(T)];

Was word in the document? assigned(T[word]);

Remove word from T unassign('T[word]');

Word frequency

• Use table again, but now utilize
the value

T := table():
do

word := FileTools:-Text:-ReadString("input_file"):
if word = NULL then

break

end:

end:

Word frequency

• Use table again, but now utilize
the value

• Use assigned to see if a word
has been encountered before

T := table():
do

word := FileTools:-Text:-ReadString("input_file"):
if word = NULL then

break

end:
if assigned(T[word]) then

 else

 end:

end:

Word frequency

• Use table again, but now utilize
the value

• Use assigned to see if a word
has been encountered before

• Modify the stored value.

T := table():
do

word := FileTools:-Text:-ReadString("input_file"):
if word = NULL then

break

end:
if assigned(T[word]) then

 T[word] := T[word] + 1:

 else

 T[word] := 1:

 end:

end:

Word frequency

How many times did word appear? T[word];

Word frequency

How many times did word appear? T[word];

Most frequent word

• for-in on a table works, but eval(T,1) is required
because tables are subject to last name
evaluation

• Doesn't require creating a list of all keys/values

M := 0:

W := NULL:

for key, value in eval(T,1)

do

 if value > M then

 M := value:

 W := key;

 end:

end:

Word frequency

How many times did word appear? T[word];

Most frequent word

• for-in on a table works, but eval(T,1) is required
because tables are subject to last name
evaluation

• Doesn't require creating a list of all keys/values

M := 0

W := NULL:

for key, value in eval(T,1)

do

 if value > M then

 M := value:

 W := key;

 end:

end:

List words and frequencies (as equations) [indices(T, pairs)]:

Word frequency

How many times did word appear? T[word];

Most frequent word

• for-in on a table works, but eval(T,1) is required
because tables are subject to last name
evaluation

• Doesn't require creating a list of all keys/values

M := 0

W := NULL:

for key, value in eval(T,1)

do

 if value > M then

 M := value:

 W := key;

 end:

end:

List words and frequencies (as equations) [indices(T, pairs)]:

Sort by frequency sort([indices(T, pairs)], key = rhs);

Word frequency

How many times did word appear? T[word];

Most frequent word

• for-in on a table works, but eval(T,1) is required
because tables are subject to last name
evaluation

• Doesn't require creating a list of all keys/values

M := 0;

W := NULL;

for key, value in eval(T,1)

do

 if value > M then

 M := value:

 W := key;

 end:

end:

List words and frequencies (as equations) [indices(T, pairs)]:

Sort by frequency sort([indices(T, pairs)], key = rhs);

Sort by frequency, space efficient sort[inplace](indices(T, pairs, output=Array), (x,y)->(rhs(x)<rhs(y)));

Collect More Data

• Collect the index for each
instance of a word along with
the count

T := table():
for i

do
word := FileTools:-Text:-ReadString("input_file"):

if word = NULL then

break
end:

if assigned(T[word]) then

 else

 end:
end:

Collect More Data

• Collect the index for each
instance of a word along with
the count

• Use a Record to store named
data

T := table():
for i

do
word := FileTools:-Text:-ReadString("input_file"):

if word = NULL then

break
end:

if assigned(T[word]) then

 else
 T[word] := Record("count"= ,

 "index"=):

 end:
end:

Collect More Data

• Collect the index for each
instance of a word along with
the count

• Use a Record to store named
data

• Use an Array in the Record to
store the indices.

T := table():
for i

do
word := FileTools:-Text:-ReadString("input_file"):

if word = NULL then

break
end:

if assigned(T[word]) then

 else
 T[word] := Record("count" = 1,

 "index" = Array([i])):

 end:
end:

Collect More Data

• Collect the index for each
instance of a word along with
the count

• Use a Record to store named
data

• Use an Array in the Record to
store the indices.

• Append new values for each
instance of the word

T := table():
for i

do
word := FileTools:-Text:-ReadString("input_file"):

if word = NULL then

break
end:

if assigned(T[word]) then
 T[word]:-count := T[word]:-count+1;

 ArrayTools:-Append(T[word]:-index, i):

 else
 T[word] := Record("count" = 1,

 "index" = Array([i])):

 end:
end:

Collect More Data

How many times did word appear? T[word]:-count;

Collect More Data

How many times did word appear? T[word]:-count;

What is the first appearance of word? T[word]:-index[1]

Collect More Data

How many times did word appear? T[word]:-count

What is the first appearance of word? T[word]:-index[1]

First word

Collect More Data

How many times did word appear? T[word]:-count

What is the first appearance of word? T[word]:-index[1]

First word for key, value in eval(T,1)
do
 if member(1, value:-index) then
 break;
 end:
end:

Collect More Data

How many times did word appear? T[word]:-count

What is the first appearance of word? T[word]:-index[1]

First word
• Remember when using an Array, we just needed

A[1]

for key, value in eval(T,1)
do
 if member(1, value:-index) then
 break;
 end:
end:

How To Pick The Right Data Structure?

How To Pick The Right Data Structure?
• How much data are you working with?

▪ If you know n is small, O(n) can still be fast
▪ Constant time operations on Arrays have small constants
▪ Constant time operations on Tables have large constants

How To Pick The Right Data Structure?
• How much data are you working with?

▪ If you know n is small, O(n) can still be fast
▪ Constant time operations on Arrays have small constants
▪ Constant time operations on Tables have large constants

• Consider your access patterns
▪ What do you need to know about the data?
▪ How are you going access the data?

How To Pick The Right Data Structure?
• How much data are you working with?

▪ If you know n is small, O(n) can still be fast
▪ Constant time operations on Arrays have small constants
▪ Constant time operations on Tables have large constants

• Consider your access patterns
▪ What do you need to know about the data?
▪ How are you going access the data?

• Do you care about the order of the words?
▪ Array

• Do you care about accessing a specific word?
▪ Table

How To Pick The Right Data Structure?
• How much data are you working with?

▪ If you know n is small, O(n) can still be fast
▪ Constant time operations on Arrays have small constants
▪ Constant time operations on Tables have large constants

• Consider your access patterns
▪ What do you need to know about the data?
▪ How are you going access the data?

• Do you care about the order of the words?
▪ Array

• Do you care about accessing a specific word?
▪ Table

• Unless memory is a concern you can always do both

Questions?

Up Next

• Upper Year Courses - Vector Calculus
o Dave Linder

	Slide 1: Data Structure Tips And Tricks
	Slide 2: Working Example
	Slide 3: Working Example
	Slide 4: Working Example
	Slide 5: Working Example
	Slide 6: Read all the words
	Slide 7: Read all the words
	Slide 8: Read all the words
	Slide 9: Read all the words
	Slide 10: Read all the words
	Slide 11: Read all the words
	Slide 12: Read all the words
	Slide 13: Read all the words
	Slide 14: Read all the words
	Slide 15: Read all the words
	Slide 16: Array Operations
	Slide 17: Array Performance
	Slide 18: Unique Words
	Slide 19: Unique Words
	Slide 20: Unique Words
	Slide 21: Unique Words
	Slide 22: Unique Words
	Slide 23: Unique Words
	Slide 24: Word frequency
	Slide 25: Word frequency
	Slide 26: Word frequency
	Slide 27: Word frequency
	Slide 28: Word frequency
	Slide 29: Word frequency
	Slide 30: Word frequency
	Slide 31: Word frequency
	Slide 32: Collect More Data
	Slide 33: Collect More Data
	Slide 34: Collect More Data
	Slide 35: Collect More Data
	Slide 36: Collect More Data
	Slide 37: Collect More Data
	Slide 38: Collect More Data
	Slide 39: Collect More Data
	Slide 40: Collect More Data
	Slide 41: How To Pick The Right Data Structure?
	Slide 42: How To Pick The Right Data Structure?
	Slide 43: How To Pick The Right Data Structure?
	Slide 44: How To Pick The Right Data Structure?
	Slide 45: How To Pick The Right Data Structure?
	Slide 46: Questions?
	Slide 47: Up Next

