Senior Architect at Maplesoft

Data Structure
Tips And Tricks
Darin Ohashi

wl o i

| B

g SRS oy

‘ Q,'a' "IJM-/-. ‘M‘(J”’f‘f’ rrs

Working Example

Working Example

* Read and analyze words from a text file

Working Example

* Read and analyze words from a text file

* Don't know anything about the input
= Don’t know which words will appear
= Don't know how many words

Working Example

* Read and analyze words from a text file

* Don't know anything about the input
= Don’t know which words will appear
= Don't know how many words

* Unknowns mean we need dynamic data structures
= Array

= 1D, index starting at 1
= Table

Read all the words

do
word := FileTools:-Text:-ReadString("input_file"):
if word = NULL then
break
end:

end:

Read all the words

e Store the words in a dynamic
Array.

* Create an empty Array by
calling the Array constructor
with an empty list

A :=Array([]):
do
word := FileTools:-Text:-ReadString("input_file"):
if word = NULL then
break
end:

end:

Read all the words

* Store the words in a dynamic PR
word := FileTools:-Text:-ReadString("input_file"):
A 'ra y if word = NULL then

break

¢ Create an empty Al’ray by iliayTools:-Append(A, word):
calling the Array constructor "
with an empty list

* Use ArrayTools:-Append to add
elements to the Array

Read all the words

How many words numelems(A);

Read all the words

How many words numelems(A);

First word Al1];

Read all the words

How many words numelems(A);

First word Al1];

First 10 words A[1..10];

Read all the words

How many words numelems(A);
First word Al];
First 10 words A[1..10];

Last word Al[-1];

Read all the words

How many words numelems(A);
First word A[1];

First 10 words A[1..10];

Last word A[-1];

Last 10 words A[-10..-1];

Read all the words

How many words numelems(A);
First word Al1];
First 10 words A[1..10];
Last word A[-1];
Last 10 words A[-10..1];
Was word in the document? found :=false;
forwinA
do

if w=word then
found :=true;
break;
end;
end;

Read all the words

How many words numelems(A);

First word Al1];

First 10 words A[1..10];

Lastword Al-1];

Last 10 words A[-10..1];

Was word in the document? found :=false;
forwinA

* Usemember(word, A)! do

if w=word then
found :=true;
break;
end;
end;

Array Operations

* Arrays work with basic maple functions
" map, seq, add, sort, etc
* ArrayTools
= Extend, Insert, Remove
= Higher level algorithms, Partition, Reverse, etc

Array Performance

Performance of Array operations
= Append/Extend and Remove from the end of the Array take, on average, time proportional to the
number of elements added or removed. Often thisis going to be constant time.
= |nsert/Remove from the middle of an Array requires moving all the elements after the position of
the change, so these will be proportional to the number of elements in the Array.
Forthe best performance add and remove elements from the back of the Array.
As Arrays can be modified, many function support inplace operations
= |fyou don’t need the original data, working inplace saves memory.
= mapl[inplace](f,A) (akatransform)
= sort[inplace](A)
One |l recently discovered:
= map[reduce=NULL](print, A) (akaforeach)

Unique Words

* Use atable 3 e
. . word := FileTools:-Text:-ReadString("input_file"):
* |n other languages: dictionary, ifword = NULL then
rea
ma p end:
end:

* Stores key/value pairs

* Constant time operations
" Insert
= Delete
" Has

Unique Words

e Use atable

=" |n other languages: dictionary,
map

* Stores key/value pairs

* Constant time operations

" |[nsert
= Remove
= Has

e Don't need to use a value
= Dynamic set

T:= table():
do
word := FileTools:-Text:-ReadString("input_file"):
if word = NULL then
break
end:
T[word] := NULL:
end:

Unique Words

How many unique words numelems(T);

Unique Words

How many unique words numelems(T);

List unique words [indices(T)];

Unique Words

How many unique words numelems(T);

List unique words [indices(T)];

Was word in the document? assigned(T[word]);

Unique Words

How many unique words numelems(T);
List unique words [indices(T)];
Was word in the document? assigned(T[word]);

Remove word from T

unassign('T[word]');

Word frequency

» Use table again, but now utilize & ™
word := FileTools:-Text:-ReadString("input_file"):
the Value if word = NULL then
break
end:

end:

Word frequency

» Use table again, but now utilize & ™

yvord :=_FileTools:-Text:-ReadString("input file"):
the Value 1f\g;>er;1k—NULLth
* Use assigned to see if a word i assigned(Tword]) then
has been encountered before else

end:
end:

Word frequency

» Use table again, but now utilize & ™

th e Va I_u e g?;gr:;j% E(I)Jli}:l-;eXt -ReadString("input_file"):
break
* Use assigned to see if a word i assigned(Tword]) then
T[word] := T[word] + 1:
has been encountered before e

end:

* Modify the stored value. end:

Word frequency

How many times did word appear?

T[word];

Word frequency

How many times did word appear? T[word];
Most frequent word M := 0:
W :=NULL:

« for-in on a table works, but eval(T,1) is required | for key, value in eval(T,1)
because tables are subject to last name do

. 1f value > M then
evaluation
'))) M := value:
* Doesn'trequire creating a list of all keys/values W = key;
end:

end:

Word frequency

How many times did word appear? T[word];
Most frequent word M:=0
W :=NULL.:

 for-in on a table works, but eval(T,1) is required for key, value in eval(T, 1)
because tables are subject to last name do

. 1f value > M then
evaluation
'))) M := value:
* Doesn'trequire creating a list of all keys/values W = key;
end:

end:

List words and frequencies (as equations) [indices(T, pairs)]:

Word frequency

How many times did word appear? T[word];
Most frequent word M:=0
W :=NULL.:
« for-in on a table works, but eval(T,1) is required for key, value in eval(T, 1)
because tables are subject to last name do :
. if value > M then
evaluation =
\ . . . M := value:
* Doesn'trequire creating a list of all keys/values W = key;
end:
end:
List words and frequencies (as equations) [indices(T, pairs)]:

Sort by frequency sort([indices(T, pairs)], key = rhs);

Word frequency

How many times did word appear? T[word];
Most frequent word M = 0;
W :=NULL;
» for-in on a table works, but eval(T,1) is required for key, value in eval(T, 1)
because tables are subject to last name do .
. if value > M then
evaluation B
'))) M := value:
* Doesn'trequire creating a list of all keys/values W = key;
end:

end:

List words and frequencies (as equations)

[indices(T, pairs) |:

Sort by frequency

sort([indices(T, pairs)], key = rhs);

Sort by frequency, space efficient

sort[inplace](indices(T, pairs, output=Array), (X,y)->(rths(x)<trhs(y)));

Collect More Data

* Collect the index for each g
i N Sta N C e Of a WO rd a l.o N g Wit h dOword := FileTools:-Text:-ReadString("input _file"):
if word = NULL then
the COLlnt break

end:
if assigned(T[word]) then

else

end:
end:

Collect More Data

* Collect the index for each i
i N Sta N C e Of a WO rd a l.o N g Wit h dOword := FileTools:-Text:-ReadString("input _file"):
if word = NULL then
the COLlnt (l;reak

if assigned(T[word]) then

e Use a Record to store named

data clse
T[word] := Record("count"= ,
"index"'=):
end:

end:

Collect More Data

* Collect the index for each i
i N Sta N C e Of a WO rd a l.o N g Wit h dOword := FileTools:-Text:-ReadString("input _file"):
if word = NULL then
the COLlnt (l;reak

if assigned(T[word]) then

e Use a Record to store named
data else

T[word] := Record("count" =1,
"index" =Array([i])):

* Use an Array in the Record to end
store the indices. |

Collect More Data

 Collect the index for each
Instance of a word along with
the count

e Use a Record to store named
data

* Use an Array in the Record to
store the indices.

* Append new values for each
Instance of the word

T = table():
fori
do
word = FileTools:-Text:-ReadString("input_file"):
if word = NULL then
break
end:
if assigned(T[word]) then
T[word]:-count :=T[word]:-count+1;
ArrayTools:-Append(T[word]:-index, i):
else
T[word] := Record("count" = 1,
"index" = Array([1])):
end:
end:

Collect More Data

How many times did word appear? T[word]:-count;

Collect More Data

How many times did word appear? T[word]:-count;

What is the first appearance of word? T[word]:-index[1]

Collect More Data

How many times did word appear? T[word]:-count

What is the first appearance of word? T[word]:-index[1]

First word

Collect More Data

How many times did word appear?

T[word]:-count

What is the first appearance of word?

T[word]:-index[1]

First word

for key, value in eval(T,1)
do
if member(1, value:-index) then
break;
end:
end:

Collect More Data

How many times did word appear? T[word]:-count
What is the first appearance of word? T[word]:-index[1]
First word for key, value in eval(T,1)
* Remember when using an Array, we just needed | do
A[1] if member(1, value:-index) then
break;
end:
end:

How To Pick The Right Data Structure?

How To Pick The Right Data Structure?

* How much data are you working with?
= |f you know nis small, O(n) can still be fast
= Constant time operations on Arrays have small constants
= Constant time operations on Tables have large constants

How To Pick The Right Data Structure?

* How much data are you working with?
= |f you know nis small, O(n) can still be fast
= Constant time operations on Arrays have small constants
= Constant time operations on Tables have large constants

 Consider your access patterns
= \WWhat do you need to know about the data?
= How are you going access the data?

How To Pick The Right Data Structure?

* How much data are you working with?
= |f you know nis small, O(n) can still be fast
= Constant time operations on Arrays have small constants
= Constant time operations on Tables have large constants

 Consider your access patterns
= \WWhat do you need to know about the data?
= How are you going access the data?

* Do you care about the order of the words?
= Array

* Do you care about accessing a specific word?
= Table

How To Pick The Right Data Structure?

* How much data are you working with?
= |f you know nis small, O(n) can still be fast
= Constant time operations on Arrays have small constants
= Constant time operations on Tables have large constants

 Consider your access patterns
= \WWhat do you need to know about the data?
= How are you going access the data?

* Do you care about the order of the words?
= Array

* Do you care about accessing a specific word?
= Table

* Unless memory is a concern you can always do both

Questions?

Up Next

* Upper Year Courses - Vector Calculus

o Dave Linder

	Slide 1: Data Structure Tips And Tricks
	Slide 2: Working Example
	Slide 3: Working Example
	Slide 4: Working Example
	Slide 5: Working Example
	Slide 6: Read all the words
	Slide 7: Read all the words
	Slide 8: Read all the words
	Slide 9: Read all the words
	Slide 10: Read all the words
	Slide 11: Read all the words
	Slide 12: Read all the words
	Slide 13: Read all the words
	Slide 14: Read all the words
	Slide 15: Read all the words
	Slide 16: Array Operations
	Slide 17: Array Performance
	Slide 18: Unique Words
	Slide 19: Unique Words
	Slide 20: Unique Words
	Slide 21: Unique Words
	Slide 22: Unique Words
	Slide 23: Unique Words
	Slide 24: Word frequency
	Slide 25: Word frequency
	Slide 26: Word frequency
	Slide 27: Word frequency
	Slide 28: Word frequency
	Slide 29: Word frequency
	Slide 30: Word frequency
	Slide 31: Word frequency
	Slide 32: Collect More Data
	Slide 33: Collect More Data
	Slide 34: Collect More Data
	Slide 35: Collect More Data
	Slide 36: Collect More Data
	Slide 37: Collect More Data
	Slide 38: Collect More Data
	Slide 39: Collect More Data
	Slide 40: Collect More Data
	Slide 41: How To Pick The Right Data Structure?
	Slide 42: How To Pick The Right Data Structure?
	Slide 43: How To Pick The Right Data Structure?
	Slide 44: How To Pick The Right Data Structure?
	Slide 45: How To Pick The Right Data Structure?
	Slide 46: Questions?
	Slide 47: Up Next

