LommelS1 - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


LommelS1

the Lommel function s

LommelS2

the Lommel function S

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

LommelS1(mu, nu, z)

LommelS2(mu, nu, z)

Parameters

mu

-

algebraic expression

nu

-

algebraic expression

z

-

algebraic expression

Description

• 

The LommelS1(mu, nu, z) function is defined in terms of the hypergeometric function

FunctionAdvisor( definition, LommelS1);

(1)
  

and LommelS2(mu, nu, z) is defined in terms of LommelS1(mu, nu, z) and Bessel functions.

LommelS2(mu,nu,z) = convert(LommelS2(mu,nu,z), LommelS1);

(2)
• 

These functions solve the non-homogeneous linear differential equation of second order.

z^2*diff(f(z),`$`(z,2))+z*diff(f(z),z)+(z^2-nu^2)*f(z) = z^(mu+1);

(3)
  

The Lommel functions also solve the following third order linear homogeneous differential equation with polynomial coefficients.

FunctionAdvisor( DE, LommelS1(mu,nu,z));

(4)

Examples

The AngerJ and WeberE, StruveH and StruveL functions can be viewed as particular cases of LommelS1.

(5)

(6)

(7)

(8)

A MeijerG representation for the Lommel functions.

(9)

(10)

The series expansion of the Lommel functions is not computable using the series command because it would involve factoring out abstract powers, leading to a result of the form z^mu1*series_1 + z^mu2*series_2 + .... This type of extended series expansion, however, can be computed using the Series command of the MathematicalFunctions package.

(11)

(12)

(13)

References

  

Abramowitz, M., and Stegun, I., eds. Handbook of Mathematical Functions. New York: Dover publications.

  

Gradshteyn, and Ryzhik. Table of Integrals, Series and Products. 5th ed. Academic Press.

  

Luke, Y. The Special Functions and Their Approximations. Vol. 1 Chap. 6.

See Also

AngerJ

FunctionAdvisor

hypergeom

MathematicalFunctions

MeijerG

Struve Functions

WeberE

 


Download Help Document