MovingFrames - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


GroupActions[MovingFrames] - a package for the Fels-Olver method of moving frames

Calling Sequences

     RightMovingFrame(mu, G, K)

     Invariantization(mu, rho, f)

Parameters

     mu        - a free (left) action of a Lie group  on a manifold , given as a transformation from  to

     G         - a Maple name or string, the name of the initialized coordinate system for the Lie group

     K         - a list of equations defining a cross-section for the action mu

     rho       - a right moving frame for the action mu

     f         - a Maple expression, defining a function on

 

Description

Examples

Description

• 

Let  be a Lie group with multiplication * and a free (left) action of  on a manifold . A right moving frame is a map such that  for all and .

• 

A cross-section to the action   is a submanifold  of  with codim(K) = dim, which is transverse to the orbits of . The cross-section has the property that if and then

• 

The Invariantization command will map any function on  to a invariant function.

• 

The commands RightMovingFrame and Invariantization are part of the DifferentialGeometry:-GroupActions:-MovingFrames package. They can be used in the forms RightMovingFrame(...) and Invariantization(...) only after executing the commands with(DifferentialGeometry), with(GroupActions), and with(MovingFrames), but can always be used by executing DifferentialGeometry:-GroupActions:-MovingFrames:-RightMovingFrame(...) and DifferentialGeometry:-GroupActions:-MovingFrames:-Invariantization(...).

• 

References:

[1] M. Fels and P. Olver, Moving Coframes I. A practical algorithm Acta Appl. Math. 51 (1998)

[2] M. Fels and P. Olver, Moving Coframes II. Regularization and theoretical foundations, Acta Appl. Math. 55 (1999) 127-208

Examples

 

Example 1.

In this example, we shall use the method of moving frames to construct the fundamental differential invariant for the special affine group (translations, rotations, scaling) in the  plane.

(2.1)

 

We start with the infinitesimal generators for the action of the special affine group.

E > 

(2.2)

 

This is a solvable group so we can use the Action command in the GroupAction package to find the action of the special affine group.

E > 

(2.3)
G > 

(2.4)

 

We use the program Prolong in the JetCalculus package to prolong this action to the 3-jets of E.

E > 

(2.5)
E > 

(2.6)

 

We calculate a moving frame for this prolonged action.

E > 

Warning, multiple moving frames

(2.7)

 

We use this moving frame to find the fundamental differential invariant on the 3-jet.

E > 

(2.8)

See Also

DifferentialGeometry

GroupActions

JetCalculus

LieAlgebras

Action

LieGroup

Prolong

 


Download Help Document