CartanSubalgebra - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


LieAlgebras[CartanSubalgebra] - find a Cartan subalgebra of a Lie algebra

Calling Sequences

     CartanSubalgebra()

     CartanSubalgebra(alg)

     CartanSubalgebra(N)

Parameters

     alg   - name or string, the name of an initialized Lie algebra

  N     - a list of vectors, defining a nilpotent subalgebra

   

 

Description

Examples

Description

• 

 Let be a Lie algebra. A Cartan subalgebra h is a nilpotent subalgebra whose normalizer in g is itself, that is,  . If g is a semi-simple Lie algebra, then every Cartan subalgebra h is Abelian and (see Adjoint) is a semi-simple linear transformation for every  (that is,  is diagonalizable over C). Cartan subalgebras are not unique. However, if g is a semi-simple Lie algebra, then any two Cartan subalgebras of g are related by an automorphism of g Let n be a nilpotent subalgebra of g and let  be the generalized null space of n. Then there always exists a Cartan subalgebra If is a regular element, then the generalized null space of  is a Cartan subalgebra.

• 

The procedure CartanSubalgebra returns a list of vectors whose span is a Cartan subalgebra.

• 

The procedure CartanSubalgebra implements the algorithm for calculating Cartan subalgebras presented in W. A. De Graaf: Lie Algebras: Theory and Algorithms.

Examples

 

 

Example 1

We calculate the Cartan subalgebra for the 8-dimensional Lie algebra of 3x3 trace-free matrices. The structure equations are obtained using the SimpleLieAlgebraData command.

(2.1)

 

Initialized the Lie algebra.

(2.2)

 

Find a Cartan subalgebra.

sl(3) > 

(2.3)

 

We can check that this subalgebra is Abelian (and hence nilpotent) and self-normalizing.

sl3 > 

(2.4)
sl3 > 

(2.5)

 

These properties can also be checked with the Query command

sl3 > 

(2.6)

 

For the split real forms of the simple Lie algebras, a Cartan subalgebra can always be found consisting of diagonal matrices in the standard representation.

sl3 > 

 

Example 2

Other Cartan subalgebras for can be found with the second calling sequence.

sl3 > 

(2.7)

 

Example 3

The Cartan subalgebra of a nilpotent Lie algebra g is g itself. Retrieve the structure equations for a nilpotent Lie algebra from the DifferentialGeometry library.

sl3 > 

(2.8)
sl3 > 

 

Check that the algebra is nilpotent.

alg3 > 

(2.9)
alg3 > 

(2.10)

 

Example 4

We find the Cartan subalgebra for a solvable Lie algebra. Retrieve the structure equations for a solvable Lie algebra from the DifferentialGeometry library.

alg3 > 

(2.11)
alg4 > 

(2.12)

 

Check that the algebra is solvable.

alg4 > 

(2.13)
alg4 > 

(2.14)
alg4 > 

(2.15)

 

Example 5.

We find the Cartan subalgebra for a Lie algebra with a non-trivial Levi decomposition. Retrieve the structure equations for such a Lie algebra from the DifferentialGeometry library.

alg4 > 

(2.16)
alg4 > 

(2.17)

 

Check that the Levi decomposition is non-trivial.

alg5 > 

(2.18)

 

Calculate the Cartan subalgebra.

alg5 > 

(2.19)

See Also

DifferentialGeometry

LieAlgebras

CartanMatrix

Query

RootSpaceDecomposition

 


Download Help Document