PositiveDefiniteMetricOnRepresentationSpace - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : DifferentialGeometry : LieAlgebras : PositiveDefiniteMetricOnRepresentationSpace

LieAlgebras[PositiveDefiniteMetricOnRepresentationSpace] - find a positive-definite inner product on a representation space which is compatible with a Cartan involution

Calling Sequences

     PositiveDefiniteMetricOnRepresentationSpace(, )

Parameters

         - a transformation, defining a Cartan involution on a semi-simple Lie algebra

         - a representation of

  

 

Description

 Examples

Description

• 

 Let  be a semi-simple Lie algebra with Killing form and Cartan involution By definition, the inner product is positive-definite and satisfies, by the Jacobi identity, This situation generalizes to any representation space of . Specifically, there always exists on a positive-definite inner product such that

for all  and .

This inner product is unique (apart from an overall factor) when the representation  is irreducible.

• 

The calling sequence PositiveDefiniteMetricOnRepresentationSpace(theta, rho) returns the most general quadratic form  on which satisfies (*).

 Examples

with(DifferentialGeometry): with(LieAlgebras):

 

Example 1.

We illustrate the command PositiveDefiniteMetricOnRepresentationSpace for the standard representation for . We use SimpleLieAlgebraData and DGsetup to initialize this Lie algebra.

LD := SimpleLieAlgebraData("sl(3)", sl3);

(2.1)

DGsetup(LD);

(2.2)

 

For Lie algebras created by the SimpleLieAlgebraData command, the standard representation and Cartan involution can be obtained from the commands StandardRepresentation and SimpleLieAlgebraProperties. First we define our representation space, the representation and the Cartan involution.

sl3 > 

DGsetup([x1, x2, x3], V);

(2.3)
V > 

rho := StandardRepresentation(sl3, representationspace = V);

sl3 > 

theta := SimpleLieAlgebraProperties(sl3)["CartanInvolution"];

(2.4)

 

We find that the standard Euclidean metric on is the -compatible metric.

sl3 > 

PositiveDefiniteMetricOnRepresentationSpace(theta, rho);

(2.5)

 

Example 2.

In this example, we consider the adjoint representation for .

sl3 > 

DGsetup([y1, y2, y3, y4, y5, y6, y7, y8], W);

(2.6)
V > 

chi := Adjoint(sl3, representationspace = W);

 

sl3 > 

Q := PositiveDefiniteMetricOnRepresentationSpace(theta, chi);

(2.7)

 

Apart from a numerical factor this coincides with the metric defined by the product of the Killing form and the matrix defining the Cartan involution.

V > 

K := Killing(sl3):

W > 

J := Tools:-DGinfo(theta, "JacobianMatrix"):

sl3 > 

convert(-K.J, DGtensor, [["cov_bas", "cov_bas"],[]], W);

(2.8)

See Also

DifferentialGeometry

LieAlgebras

CartanInvolution

Killing

SimpleLieAlgebraData

SimpleLieAlgebraProperties

 


Download Help Document