European Options Examples - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Finance : Financial Instruments : European Options Examples

Pricing European Options Using the Finance Package

Simulation

restart; withFinance:

 

We will consider a stochastic variable, which follows the standard Brownian motion with drift 0.055 and diffusion 0.3.

 

Y:=BrownianMotion0, 0.055,0.3

Y:=_X

(1.1)

PathPlotYt,t=0..2,timesteps=50,replications=10, thickness =3, color = red..blue, axes = BOXED, gridlines = true, tickmarks = 10, 10

 

Here ae sample paths for ⅇYt.

 

PathPlotⅇYt,t=0..2,timesteps=50,replications=10,thickness=3,color=red..blue,axes=BOXED,gridlines=true,tickmarks=10,10

 

You can compute the expected value of any expression involving Y.

 

ExpectedValuemaxⅇY30.5,0,replications=105

value=0.5000000000,standarderror=0.

(1.2)

 

Consider another stochastic process.

 

Z:=GeometricBrownianMotion1,0.1,0.3

Z:=_X3

(1.3)

DriftZtZt=DriftⅇYtⅇYt

0.1=0.1000000000

(1.4)

DiffusionZtZt=DiffusionexpYtexpYt

0.3=0.3

(1.5)

 

So eYt and Zt define the same stochastic process.

 

ExpectedValuemaxZ31,0,replications=105

value=0.4506814169,standarderror=0.002083752433

(1.6)

 

Note that the previous value is the expected payoff of a European call option with strike price 1 maturing in 3 years. In order to compute the current option price you have to discount this expected value at the risk-free rate (which is the drift parameter of Zt).

 

DiscountFactor3,0.1ExpectedValuemaxZ31,0,replications=105,output=value

0.3354146746

(1.7)

 

Compare this with the analytic price obtained using the Black-Scholes formula.

 

BlackScholesPrice1,1,3,0.3, 0.1

0.3360448376

(1.8)

 

Try to compute some market sensitivities of the option price.

 

W:=t→lnZt0.055t0.3

W:=t→lnZt+10.055t0.3

(1.9)

DriftWt;

0.

(1.10)

DiffusionWt;

0.9999999999

(1.11)

 

So Wt is the standard Wiener process. Using tools from the Malliavin Calculus you can show that for any payoff function  ft

 

Δ =  S0 EerTfST=erTEfSTWTS0σT

 

ⅇ0.13ExpectedValuemaxZ31,0W30.33,replications=106,output=value

0.8034185612

(1.12)

BlackScholesDelta1,1,3,0.3,0.1;

0.7987480882

(1.13)

 

Here are multiple stocks.

 

W1:=WienerProcess

W1:=_W

(1.14)

S1:=t→100ⅇ0.055t+0.3W1t

S1:=t→100ⅇ0.055t+0.3W1t

(1.15)

W2:=WienerProcess

W2:=_W0

(1.16)

S2:=t→100ⅇ0.055t+0.3W2t

S2:=t→100ⅇ0.055t+0.3W2t

(1.17)

ⅇ0.11ExpectedValuemaxS11S21,0,timesteps=100,replications=104,output=value

16.87358420

(1.18)

ⅇ0.11ExpectedValuemaxS21S11,0,timesteps=100,replications=104,output=value

16.94221984

(1.19)

 

This is the correlation structure.

 

W3:=WienerProcess

W3:=_W1

(1.20)

S1:=t→100ⅇ0.055t+0.30.00001W1t+W3t

S1:=t→100ⅇ0.055t+0.30.00001W1t+W3t

(1.21)

S2:=t→100ⅇ0.055t+0.30.000001W2t+W3t

S2:=t→100ⅇ0.055t+0.30.000001W2t+W3t

(1.22)

ⅇ0.11ExpectedValuemaxS21S11,0,timesteps=100,replications=104,output=value

0.0001198987355

(1.23)

Download Help Document