Display - Maple Help

DifferentialAlgebra[Tools]

 Display
 print a description of a differential polynomial ring or ideal

 Calling Sequence Display (R)

Parameters

 R - a differential polynomial ring, or, ideal

Description

 • The function call Display(R) prints a text description of R. In particular, the ranking of R is detailed.
 • This command is part of the DifferentialAlgebra:-Tools package. It can be called using the form Display(...) after executing the command with(DifferentialAlgebra:-Tools). It can also be directly called using the form DifferentialAlgebra[Tools][Display](...).

Examples

 > $\mathrm{with}\left(\mathrm{DifferentialAlgebra}\right):$$\mathrm{with}\left(\mathrm{Tools}\right):$
 > $R≔\mathrm{DifferentialRing}\left(\mathrm{derivations}=\left[x,y\right],\mathrm{blocks}=\left[\left[v,u\right],{\mathrm{lex}}_{w}\right]\right)$
 ${R}{≔}{\mathrm{differential_ring}}$ (1)
 > $\mathrm{Display}\left(R\right)$
 Data structure: differential ring Ranking:        grlexA[v,u] >> lex[w] Derivations:    x > y Notation:       jet Parameters:     [] Arbitrary:     []
 > $\mathrm{ideal}≔\mathrm{RosenfeldGroebner}\left(\left[{u}_{x}^{2}-4u,{u}_{x,y}{v}_{y}-u+1,{v}_{x,x}-{u}_{x}\right],R\right)$
 ${\mathrm{ideal}}{≔}\left[{\mathrm{regular_differential_chain}}\right]$ (2)
 > $\mathrm{Display}\left({\mathrm{ideal}}_{1}\right)$
 Data structure: regular differential chain Leading ranks:  v[x,x] < v[y] < u[x]^2 < u[y]^2 Attributes:     [differential, autoreduced, primitive, squarefree, coherent, normalized]