Adjoint - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


LieAlgebras[Adjoint] - find the ad Matrix for a vector in a Lie algebra

LieAlgebras[AdjointExp] - find the Ad Matrix for a vector in a Lie algebra

Calling Sequences

     Adjoint(alg)

     Adjoint(alg, keyword)

     Adjoint(x, h, k)

     AdjointExp(x)

Parameters

     alg      - (optional) the name of a Lie algebra 𝔤

     keyword  - (optional) the keyword argument representationspace = framename, where framename is the name of an initialized frame

     x        - a vector in a Lie algebra g

     h        - (optional) a list of vectors defining a basis for a subspace h in a Lie algebra 𝔤

     k        - (optional) a list of vectors defining a complementary basis in 𝔤 to h

 

 

Description

Examples

Description

• 

 Let 𝔤 be a Lie algebra and x  𝔤. Then the adjoint transformation defined by x is the linear transformation adx : 𝔤  𝔤 defined by adxy = x, y for all y  𝔤. The transformation adxalways defines a derivation on 𝔤, that is, adxy, z = adxy, z + y, adxz. The mapping xadx defines a representation of 𝔤. The exponential of adx, usually denoted by Ad(x), is a Lie algebra isomorphism.

• 

Adjoint(x) returns the matrix representing the linear transformation adx.

• 

AdjointExp(x) returns the matrix representing the linear transformation Ad(x) = exp(adx).

• 

Adjoint() returns the list of adjoint matrices for the basis vectors of the current algebra 𝔤.

• 

Adjoint(alg) returns the list of adjoint matrices for the basis vectors of the algebra alg.

• 

Adjoint(alg , representationspace = V) returns the adjoint representation of 𝔤, with representation space V.

• 

Adjoint(x, h) calculates the restriction of ad(x) to the subspace h (h must be an ad(x) invariant subspace).

• 

Adjoint(x, h, k) calculates Adjoint(x) on the vector space quotient g/k with respect to the basis determined by h (k must be an ad(x) invariant subspace).

• 

The commands Adjoint and AdjointExp are part of the DifferentialGeometry:-LieAlgebras package. They can be used in the form Adjoint(...) and AdjointExp(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Adjoint(...) and DifferentialGeometry:-LieAlgebras:-AdjointExp(...).

Examples

withDifferentialGeometry:withLieAlgebras:

 

Example 1.

First initialize a Lie algebra.

L1_DGLieAlgebra,Alg1,4,1,3,1,1,2,4,1,1,1,4,2,1,2,3,2,1

L1:=e1,e3=e1,e1,e4=e2,e2,e3=e2,e2,e4=e1

(2.1)

DGsetupL1:

Alg1 > 

Adjointte4

 

AdjointExp(t*e4) is given by the Matrix exponential of Adjoint(t*e4).

Alg1 > 

AdjointExpte4

Alg1 > 

Adjointe1+2e3

 

Calculate the restriction of Adjoint(e3) to the subspace defined by [e1, e2].

Alg1 > 

Adjointe3,Adjointe3,e1,e2

 

Calculate the linear transformation induced by Adjoint(e4 + 2*e3) on the quotient of [e1, e2, e3, e4] by the subspace defined by [e3, e4] with respect to the basis [e1, e2].

Alg1 > 

Adjointe4+2e3,Adjointe4+2e3,e1,e2,e3,e4

Calculate the adjoint representation of Alg1. First define the representation space.

DGsetupx1,x2,x3,x4,V

frame name: V

(2.2)

ρAdjointAlg1,representationspace=V

Alg1 > 

Queryρ,Representation

true

(2.3)

See Also

DifferentialGeometry

LieAlgebras

LinearAlgebra[MatrixExponential]

Representation