InfinitesimalSymmetriesOfGeometricObjectFields - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : DifferentialGeometry : Group Actions : InfinitesimalSymmetriesOfGeometricObjectFields

GroupActions[InfinitesimalSymmetriesOfGeometricObjectFields] - find the infinitesimal symmetries (vector fields) for a collection of vector fields, differential forms tensors, or connections

Calling Sequences

     InfinitesimalSymmetriesOfGeometricObjectFields(T, option)

Parameters

     T         - a list of vector fields, differential forms, tensors, connections, list of vector fields, list of differential forms, list of tensors

     option    - output = "list", output = "pde", auxiliaryequations = [Delta1, Delta2,..] coefficientvariables = [x1, x2, ...], ansatz = X, unknowns = [F1, F2, ...], parameters = {a1, a2}

 

Description

Examples

Description

• 

Let M be a manifold and let T1, T2, ...TN be a list of tensor fields on M. Then the Lie algebra Γof infinitesimal symmetries of the list of tensors Ti is the Lie algebra of vector fields X on M such that the Lie derivatives ℒX Ti = 0 for i = 1, 2, ... , N.   

• 

If the tensors Ti all have the same tensorial type, say Ti TsrM, then let 𝒯 = spanT1, T2, ...TN. Then the Lie algebra Γ of infinitesimal symmetries of the tensor space 𝒯 is Lie algebra of vector fields X on M such that ℒX Ti 𝒯 for i = 1, 2, ... , N. 

• 

The command InfinitesimalSymmetriesOfGeometricObjectFields(T) calculates the Lie algebra of infinitesimal symmetries of the tensors and tensor spaces in the list T. For example, ifT1, T2, T3,T4 are 4 tensor fields and T = T1, T2, T3,T4, then InfinitesimalSymmetriesOfGeometricObjectFields(T) will return the Lie algebra of vector fields X such that X T1 = 0 , X T1 = 0 , ℒX T3  span T3,T4, X T4  span T3,T4.  

• 

The procedure InfinitesimalSymmetriesOfGeometricObjectFields creates an arbitrary vector field X on M and generates a system of first order PDE for the coefficients of X from the Lie derivative equations X Ti = 0 and ℒX Ti 𝒯. These PDE are solved using pdsolve .

• 

If the (real) Lie algebra Γ of infinitesimal symmetries for a given collection of geometric object fields is finite dimensional (so that the most general infinitesimal symmetry depends only upon arbitrary constants), then the optional argument output = "list" will return a basis for Γ.

• 

With the option output = "pde", just the determining differential equations for the symmetries are returned.

• 

The variables appearing in the coefficients of the vector field X can be specified with the option coefficientvariables = [x1, x2, ...].

• 

The exact form of the infinitesimal symmetries to be found can be specified with the option ansatz = X. With this option, the unknown coefficients to be solved for must be explicitly identified with the option unknowns = [F1, F2, ...].

• 

Additional constraints on the symmetry vector field X can be specified with the optional argument auxiliaryequations = [Delta1, Delta2,..], where Delta1, Delta2,.. are differential equations whose unknowns are the coefficients of the vector field X.

• 

If the given geometric object fields T depend upon parameters {a1, a2, ...}, then the optional argument parameters = {a1, a2, ...} will invoke the case splitting capabilities of pdsolve. Exceptional parameter values will be determined and a sequence of lists of infinitesimal symmetries, one list for each set of parameter values, will be returned.

• 

Other optional arguments for pdsolve may be passed through the command InvariantGeometricObjectFields.

• 

If pdsolve is unable to explicitly solve the pde system for the infinitesimal symmetries, then NULL is returned.

• 

The command InfinitesimalSymmetriesOfGeometricObjectFields is part of the DifferentialGeometry:-GroupActions package. It can be used in the form InfinitesimalSymmetriesOfGeometricObjectFields(...) only after executing the commands with(DifferentialGeometry) and with(GroupActions), but can always be used by executing DifferentialGeometry:-GroupActions:-InfinitesimalSymmetriesOfGeometricObjectFields(...).

Examples

withDifferentialGeometry:withTensor:withGroupActions:

 

We define a manifold M with coordinates x, y, z.

J > 

DGsetupx,y,z,M

frame name: M

(2.1)

Example 1.

Find all vector fields which commute with the vector field Y = Dx.

M > 

YD_x

Y:=D_x

(2.2)
M > 

InfinitesimalSymmetriesOfGeometricObjectFieldsY

_F3y,zD_x+_F2y,zD_y+_F1y,zD_z

(2.3)

 

Find all vector fields whose coefficients depend only on x which commute with the vector field Y = Dx.

M > 

InfinitesimalSymmetriesOfGeometricObjectFieldsY,coefficientvariables=x

D_x_C3+D_y_C2+D_z_C1

(2.4)

 

Example 2.

Find the infinitesimal symmetries for the metric g = dx2 +dy2 +dz2.

M > 

gevalDGdx&tdx+dy&tdy+dz&tdz

g:=dxdx+dydy+dzdz

(2.5)
M > 

InfinitesimalSymmetriesOfGeometricObjectFieldsg,output=list

D_yz+D_zy,D_z,D_xz+D_zx,D_xy+D_yx,D_y,D_x

(2.6)

 

Show the defining differential equations for these symmetries. Here we explicitly define the general form of the symmetry vector and specify the unknowns.

M > 

XevalDGRx,y,zD_x+Sx,y,zD_y+Tx,y,zD_z

X:=Rx,y,zD_x+Sx,y,zD_y+Tx,y,zD_z

(2.7)
M > 

URx,y,z,Sx,y,z,Tx,y,z

U:=Rx,y,z,Sx,y,z,Tx,y,z

(2.8)
M > 

InfinitesimalSymmetriesOfGeometricObjectFieldsg,output=pde,unknowns=U,ansatz=X

2xRx,y,z,xSx,y,z+yRx,y,z,xTx,y,z+zRx,y,z,xSx,y,z+yRx,y,z,2ySx,y,z,yTx,y,z+zSx,y,z,xTx,y,z+zRx,y,z,yTx,y,z+zSx,y,z,2zTx,y,z,0,Rx,y,z,Sx,y,z,Tx,y,z

(2.9)

 

 We can use the auxilaryequations option to find the symmetries X of the metric g for which R + S+T = 0. 

M > 

ΔRx,y,z+Sx,y,z+Tx,y,z=0

Δ:=Rx,y,z+Sx,y,z+Tx,y,z=0

(2.10)
M > 

InfinitesimalSymmetriesOfGeometricObjectFieldsg,output=list,auxiliaryequations=Δ,unknowns=U,ansatz=X

D_x+D_z,yzD_x+xzD_yxyD_z,D_x+D_y

(2.11)

 

Example 3.

Find the joint infinitesimal symmetries for the 0 connection C and the volume form dx dy  dz.

M > 

CConnection0&multD_x&tensordx&tensordx

C:=0D_xdxdx

(2.12)
M > 

μevalDGdx&wdy&wdz

μ:=dxdydz

(2.13)
M > 

InfinitesimalSymmetriesOfGeometricObjectFieldsμ,C

_C2x+_C8x_C9zy_C11_C10D_x+_C5x+_C6z+_C8y+_C7D_y+_C1x+_C2z+_C4y+_C3D_z

(2.14)

 

Example 4.

Here is a famous calculation due to E. Cartan. See Fulton and Harris Representation Theory page 357. We find the linear infinitesimal symmetries of the 3-form ω defined on the 7-manifold N with coordinates v1, v3, v4, w1,w3,w4, u.

M > 

DGsetupv1,v3,v4,w1,w3,w4,u,N

frame name: N

(2.15)
N > 

ωevalDGdw3&wdu&wdv3+dv4&wdu&wdw4+dw1&wdu&wdv1+2dv1&wdv3&wdw4+2dw1&wdw3&wdv4

ω:=2dv1dv3dw4+dv1dw1du+dv3dw3du+2dv4dw1dw3dv4dw4du

(2.16)
N > 

AMatrix7,7,i,jaij

N > 

XconvertA,DGvector

X:=a11v1+a12v3+a13v4+a14w1+a15w3+a16w4+a17uD_v1+a21v1+a22v3+a23v4+a24w1+a25w3+a26w4+a27uD_v3+a31v1+a32v3+a33v4+a34w1+a35w3+a36w4+a37uD_v4+a41v1+a42v3+a43v4+a44w1+a45w3+a46w4+a47uD_w1+a51v1+a52v3+a53v4+a54w1+a55w3+a56w4+a57uD_w3+a61v1+a62v3+a63v4+a64w1+a65w3+a66w4+a67uD_w4+a71v1+a72v3+a73v4+a74w1+a75w3+a76w4+a77uD_u

(2.17)
N > 

varsconvertA,set

vars:=a11,a12,a13,a14,a15,a16,a17,a21,a22,a23,a24,a25,a26,a27,a31,a32,a33,a34,a35,a36,a37,a41,a42,a43,a44,a45,a46,a47,a51,a52,a53,a54,a55,a56,a57,a61,a62,a63,a64,a65,a66,a67,a71,a72,a73,a74,a75,a76,a77

(2.18)
N > 

YInfinitesimalSymmetriesOfGeometricObjectFieldsω,ansatz=X,unknowns=vars

Y:=_C1v1+_C2v3+_C3v4+_C4w3+_C5w4+_C6uD_v1_C4w1_C7v1_C8v3_C9v4u_C11w4_C10D_v3+_C1v4+_C4u_C5w1+_C6v3+_C8v4v1_C11w3_C10D_v4_C1w1+_C7w3_C9uv3_C12v4_C13w4_C11D_w1_C2w1+_C3u+_C6w4+_C8w3+v1_C12v4_C14D_w3_C1w4+_C3w1+_C8w4+_C9w3+u_C12+v1_C13+v3_C14D_w42_C3v32_C4w42_C6w12_C9v1+2v4_C122w3_C11D_u

(2.19)
N > 

cTools:-DGinfoY,NonJetIndets

c:=_C1,_C2,_C3,_C4,_C5,_C6,_C7,_C8,_C9,_C10,_C11,_C12,_C13,_C14

(2.20)
N > 

GammaseqTools:-DGmap1,diff,Y,v,v=c

Γ:=v1D_v1+v4D_v4w1D_w1w4D_w4,v3D_v1w1D_w3,2D_uv3uD_w3+v4D_v1w1D_w4,2D_uw4+uD_v4w1D_v3+w3D_v1,w1D_v4+w4D_v1,2D_uw1+uD_v1+v3D_v4w4D_w3,v1D_v3w3D_w1,v3D_v3+v4D_v4w3D_w3w4D_w4,2D_uv1+uD_w1+v4D_v3w3D_w4,w3D_v4+w4D_v3,2D_uw3+uD_v3v1D_v4+w4D_w1,2D_uv4uD_w4v1D_w3+v3D_w1,v1D_w4+v4D_w1,v3D_w4+v4D_w3

(2.21)
N > 

nopsGamma

14

(2.22)

 

It is a simple matter to use the package LieAlgebras to check that this Lie algebra is indecomposable and simple and is a realization of the exceptional Lie algebra g2.

 

Example 5.

Find the point symmetries of the Lagrangian for the (2 +1) wave equation. The result is a 8-dimensional Lie algebra.

N > 

DGsetupx,y,t,u,J,1

frame name: J

(2.23)
J > 

λevalDGu12+u22u32Dx&wDy&wDt

λ:=u12+u22u32DxDyDt

(2.24)
J > 

GammaInfinitesimalSymmetriesOfGeometricObjectFieldsλ,output=list

Γ:=2D_tt2D_xx2D_yy+D_u[]u[],D_u[],D_ty+D_yt,D_t,D_tx+D_xt,D_xy+D_yx,D_y,D_x

(2.25)
J > 

nopsGamma

8

(2.26)

 

Example 6.

Find the infinitesimal conformal symmetries of the metric g = dx2 +dy2 +dz2.  These are the vector fields X such that ℒXg = λg or ℒXg spang.

J > 

DGsetupx,y,z,M

frame name: M

(2.27)
M > 

gevalDGdx&tdx+dy&tdy+dz&tdz

g:=dxdx+dydy+dzdz

(2.28)

 

Note that the first argument is now a list of a list.

M > 

ConSymInfinitesimalSymmetriesOfGeometricObjectFieldsg,output=list

ConSym:=14y214z2+14x2D_x+12xyD_y+12xzD_z,12xzD_x+12yzD_y14z2+14x2+14y2D_z,12xD_x+12yD_y+12zD_z,12xyD_x14z214y2+14x2D_y+12yzD_z,D_yz+D_zy,D_z,D_xz+D_zx,D_xy+D_yx,D_y,D_x

(2.29)

 

The conformal symmetries of 𝔤 define a 10-dimensional Lie algebra.

M > 

nopsConSym

10

(2.30)

 

Example 7.

Find the  infinitesimal symmetries of a distribution of vector fields Δ. These are the vector fields X such that ℒX(Y)  Δ for each Y Δ.

M > 

DGsetupx1,x2,x3,x4,x5,Q

frame name: Q

(2.31)
Q > 

ΔevalDGD_x1+x3D_x2+x4D_x3+x43D_x5,D_x4:

Q > 

InfinitesimalSymmetriesOfGeometricObjectFieldsΔ,output=list

x2D_x2x3D_x3x4D_x43x5D_x5,12x42D_x116x5+12x3x42D_x213x43D_x315x45D_x5,x1D_x12x2D_x2x3D_x3x5D_x5,D_x5,x1D_x2+D_x3,D_x2,D_x1

(2.32)

 

Example 8.

Find the symmetries of a metric which depend upon 2 parameters α, β, where α 0.

Q > 

gevalDGdx&tdx+expαxdy&tdy+βy+1dz&tdz

g:=dxdx+ⅇαxdydy+yβ+1dzdz

(2.33)
M > 

InfinitesimalSymmetriesOfGeometricObjectFieldsg,output=list,parameters=α,β,auxiliaryequations=α0

D_z,2D_xα+yD_y,D_y,yαD_x14y2α2ⅇαxD_y,4D_xα2yβ+1D_yβ+zD_z,D_z,α=α,β=0,α=α,β=β

(2.34)

 

Example 9.

The command InfinitesimalSymmetriesOfGeometricObjectFields can also be used to calculate the symmetries of a tensor T defined on a Lie algebra.

LDLibrary:-RetrieveWinternitz,1,4,10,alg1

LD:=e2,e3=e1,e2,e4=e3,e3,e4=e2

(2.35)

DGsetupLD

Lie algebra: alg1

(2.36)
alg1 > 

TevalDGe4&tθ1&te4

T:=e4θ1e4

(2.37)
alg1 > 

InfinitesimalSymmetriesOfGeometricObjectFieldsT

_C1e1+_C2e4

(2.38)

 

See Also

DifferentialGeometry

GroupActions

JetCalculus

Tensor

LieAlgebras

Connection

LieDerivative

DGinfo

PDEtools[Infinitesimals]

Physics[LieDerivative]

Physics