EulerLagrange - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


JetCalculus[EulerLagrange] - calculate the Euler-Lagrange equations for a Lagrangian

Calling Sequences

     EulerLagrange(L)

     EulerLagrange(λ )

     EulerLagrange(ω)

Parameters

     L         - a function on a jet space defining the Lagrange function for a variational problem (single or multiple integral)

     λ         - a differential bi-form on a jet space defining the Lagrangian form for a variational problem (single or multiple integral)

     ω         - a differential bi-form of vertical degree > 0

 

Description

Examples

Description

• 

Let π:EM be a fiber bundle, with base dimension n and fiber dimension m and let πk:JkE  M  be the k-th jet bundle. Introduce local coordinates (xi, uα, uiα, uijα, ..., uij ℓα, ...) where, as usual, if s:ME is a section and σ=jksx:ME is the k-jet of s, then

uij  ℓασ = k sα xxi xixℓ    and 1ijℓ dimM.

A function L on JkE defines the action integral or fundamental integral,

Is = M Ljks dx1 dx2 dxn ,

for a k-th order multiple integral problem in the calculus of variations. The Euler-Lagrange equations EαL =0 are the system of m, 2kthorder partial differential equations for the extremals s of the action integral Is. The general formula for the components of the Euler-Lagrange operator are

EαL = L uαDiL uiα+DijL   uijα  +1k DijℓL        uijℓα,

where Di is the total derivative with respect to xi. In the special case of a single integral variational problem, this formula can be written as

 

EαL = L uαddxL u.α+d2dx2L   u..α  

while for a double integral problem, we have

 

EαL = L uαDxL uxα   DyL uyα+DxxL    uxxα + DxyL    uxyα + DyyL    uyyα .

See Gelfand and Fomin for an excellent introduction to the calculus of variations.

 

• 

For the first calling sequence, EulerLagrange(L) returns the list of functions E1L, E2L, ... , EmL on J2kE.

• 

The differential forms on the jet spaces JkE can be bi-graded by their horizontal and vertical/contact degree. A differential form of horizontal degree n and vertical degree 0 is called a Lagrangian form or Lagrangian bi-form. In terms of local coordinates on JkE, a Lagrangian bi-form λ can be expressed as

λ = L ( xi, uα, uiα, uijα, ..., uij  ℓα) Dx1 Dx2  Dxn .

The associated Euler-Lagrange form Eλ is a differential bi-form of horizontal degree n and vertical degree 1. It is defined in terms of the usual Euler-Lagrange expressions EαL by

Eλ = EαLΘα Dx1Dx2   Dxn    where    Θα = duα  uiα dxi

 For geometrical aspects of the calculus of variations, the representation of the Euler-Lagrange equations as the components of a differential bi-form is very useful.

• 

The third calling sequence EulerLagrange(ω) returns a list of m differential bi-forms of vertical degree 1 less than the vertical degree of ω. Here the partial derivatives with respect to the jets of dependent variables uij  α in the usual formula for the Euler-Lagrange operator acting on functions are replaced by interior products of the corresponding vector fields, that is,

Eαω =  ι αω Di   ι αiω +Dij  ιαijω   +1k Dijℓ  ιαij ℓ ω      where    ι αij denotes the interior product with the vector field             uijα

• 

 The command EulerLagrange is part of the DifferentialGeometry:-JetCalculus package.  It can be used in the form EulerLagrange(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-EulerLagrange(...).

Examples

withDifferentialGeometry:withJetCalculus:

 

Example 1.

Create a space of 1 independent variable and 3 dependent variables.

DGsetupt,u,v,w,E,2:

 

Define the standard Lagrangian L from mechanics as the difference between the kinetic and potential energy.

E > 

L12u12+v12+w12Vu,v,w

Lu122+v122+w122Vu,v,w

(2.1)

 

Calculate the Euler-Lagrange equations for L.

E > 

ELEulerLagrangeL

ELVuu1,1,Vvv1,1,Vww1,1

(2.2)

 

The convert/DGdiff command will change this output from jet space notation to standard differential equations notation.

E > 

convertEL,DGdiff

D1Vut,vt,wtut,t,D2Vut,vt,wtvt,t,D3Vut,vt,wtwt,t

(2.3)

 

Here are the same calculations done with differential forms.

E > 

λL&multDt

λu122+v122+w122Vu,v,wDt

(2.4)
E > 

EulerLagrangeλ

Vu+u1,1DtCu+Vv+v1,1DtCv+Vw+w1,1DtCw

(2.5)

 

Example 2.

Create a space of 1 independent variable and 1 dependent variable.

E > 

DGsetupx,u,E,2:

 

Calculate the Euler-Lagrange equations for an arbitrary second order Lagrangian.

E > 

L2Fx,u,u1,u1,1:

E > 

PDEtoolsdeclareFx,u,u1,u1,1,quiet

E > 

Eul1EulerLagrangeL2

Eul1FuFx,u1Fu,u1u1Fu1,u1u1,1Fu1,u1,1u1,1,1+Fx,x,u1,1+Fx,u,u1,1u1+Fx,u1,u1,1u1,1+Fx,u1,1,u1,1u1,1,1+Fu,u,u1,1u1+Fu,u1,u1,1u1,1+Fu,u1,1,u1,1u1,1,1+Fx,u,u1,1u1+Fu,u1,u1,1u1+Fu1,u1,u1,1u1,1+Fu1,u1,1,u1,1u1,1,1+Fu,u1,1+Fx,u1,u1,1u1,1+Fu,u1,1,u1,1u1+Fu1,u1,1,u1,1u1,1+Fu1,1,u1,1,u1,1u1,1,1+Fu1,u1,1+Fx,u1,1,u1,1u1,1,1+Fu1,1,u1,1u1,1,1,1

(2.6)

 

Compare with the usual formula for the Euler-Lagrange expression in terms of the total derivatives (calculated using TotalDiff) of the partial derivative of L with respect to the jet coordinates u0, u1, u1,1.

E > 

P0,P1,P2diffL2,u,diffL2,u1,diffL2,u1,1

P0,P1,P2Fu,Fu1,Fu1,1

(2.7)
E > 

Eul2P0TotalDiffP1,1+TotalDiffP2,1,1

Eul2FuFx,u1Fu,u1u1Fu1,u1u1,1Fu1,u1,1u1,1,1+Fx,x,u1,1+Fx,u,u1,1u1+Fx,u1,u1,1u1,1+Fx,u1,1,u1,1u1,1,1+Fu,u,u1,1u1+Fu,u1,u1,1u1,1+Fu,u1,1,u1,1u1,1,1+Fx,u,u1,1u1+Fu,u1,u1,1u1+Fu1,u1,u1,1u1,1+Fu1,u1,1,u1,1u1,1,1+Fu,u1,1+Fx,u1,u1,1u1,1+Fu,u1,1,u1,1u1+Fu1,u1,1,u1,1u1,1+Fu1,1,u1,1,u1,1u1,1,1+Fu1,u1,1+Fx,u1,1,u1,1u1,1,1+Fu1,1,u1,1u1,1,1,1

(2.8)
E > 

Eul2Eul11

0

(2.9)

 

Here are the same calculations again using an alternative jet space notation. See Preferences for details.

E > 

PreferencesJetNotation,JetNotation2

JetNotation1

(2.10)
E > 

DGsetupx,u,E,2:

 

Calculate the Euler-Lagrange equations for an arbitrary second order Lagrangian.

E > 

L2Fx,u0,u1,u2:

E > 

PDEtoolsdeclareFx,u,u1,u2,quiet

E > 

Eul1EulerLagrangeL2

Eul1Fu0Fx,u1Fu0,u1u1Fu1,u1u2Fu1,u2u3+Fx,x,u2+Fx,u0,u2u1+Fx,u1,u2u2+Fx,u2,u2u3+Fu0,u0,u2u1+Fu0,u1,u2u2+Fu0,u2,u2u3+Fx,u0,u2u1+Fu0,u1,u2u1+Fu1,u1,u2u2+Fu1,u2,u2u3+Fu0,u2+Fx,u1,u2u2+Fu0,u2,u2u1+Fu1,u2,u2u2+Fu2,u2,u2u3+Fu1,u2+Fx,u2,u2u3+Fu2,u2u4

(2.11)
E > 

PreferencesJetNotation,JetNotation1

JetNotation2

(2.12)
E > 

Example 3.

Create a space of 3 independent variables and 1 dependent variable. Derive the Laplace's equation from its variational principle.

E > 

DGsetupx,y,z,u,E,1:

E > 

L312u12+u22+u32

L3u122+u222+u322

(2.13)
E > 

E3EulerLagrangeL3

E3u1,1u2,2u3,3

(2.14)
E > 

convertE31,DGdiff

ux,xuy,yuz,z

(2.15)

 

Repeat this computation using differential forms.

E > 

λ3evalDGL3Dx&wDy&wDz

λ3u122+u222+u322DxDyDz

(2.16)
E > 

EulerLagrangeλ3

u1,1+u2,2+u3,3DxDyDzCu

(2.17)

 

Example 4.

Create a space of 3 independent variables and 3 dependent variables. Derive 3-dimensional Maxwell equations from the variational principle.

E > 

DGsetupx,y,t,A_x,A_y,A_t,M,1:

 

Define the Lagrangian.

M > 

L12A_t22+A_t2A_y312A_y3212A_t12+A_t1A_x312A_x32+12A_y12A_y1A_x2+12A_x22

L12A_t22+A_t2A_y312A_y3212A_t12+A_t1A_x312A_x32+12A_y12A_y1A_x2+12A_x22

(2.18)

 

Compute the Euler-Lagrange equations.

M > 

Maxwell1EulerLagrangeL

Maxwell1A_x2,2+A_y1,2A_t1,3+A_x3,3,A_x1,2A_y1,1A_t2,3+A_y3,3,A_t1,1A_x1,3+A_t2,2A_y2,3

(2.19)

 

Change notation to improve readability.

M > 

PDEtoolsdeclarequiet

M > 

Maxwell2mapconvert,Maxwell1,DGdiff

Maxwell2A_xy,y+A_yx,yA_tt,x+A_xt,t,A_xx,yA_yx,xA_tt,y+A_yt,t,A_tx,xA_xt,x+A_ty,yA_yt,y

(2.20)

Maxwell2:=A_xy,y+A_yx,y+A_xt,tA_tt,x,A_xx,yA_yx,x+A_yt,tA_tt,y,A_xt,x+A_tx,xA_yt,y+A_ty,y

 

Example 5.

In this example we apply the Euler-Lagrange operator to some contact forms. We start with the case of 1 independent variable and 1 dependent variable.

M > 

DGsetupx,u,E,3:

 

First we try a form ω1 of vertical degree 1.

E > 

ω1evalDGaxCu+bxCu1+cxCu1,1+dxCu1,1,1

ω1axCu+bxCu1+cxCu1,1+dxCu1,1,1

(2.21)
E > 

EulerLagrangeω1

axbx+cx,xdx,x,x

(2.22)

 

Try a form ω2 of vertical degree 2.

E > 

ω2evalDGaxCu&wCu1+bxCu&wCu1,1+cxCu1&wCu1,1

ω2axCuCu1+bxCuCu1,1+cxCu1Cu1,1

(2.23)
E > 

EulForm1EulerLagrangeω2

EulForm1bx,x+axCucx,x+2bx2axCu13cxCu1,12cxCu1,1,1

(2.24)

 

Here is the explicit formula for computing EulerLagrange(omega2).

E > 

P0HookD_u,ω2;P1HookD_u1,ω2;P2HookD_u1,1,ω2

P0axCu1+bxCu1,1

P1axCu+cxCu1,1

P2bxCucxCu1

(2.25)
E > 

EulForm2evalDGP0TotalDiffP1,1+TotalDiffP2,1,1

EulForm2bx,x+axCucx,x+2bx2axCu13cxCu1,12cxCu1,1,1

(2.26)
E > 

EulForm2&minusEulForm11

0Cu

(2.27)

 

Now we compute some simple examples in the case of 2 independent variables and 2 dependent variables.

E > 

DGsetupx,y,u,v,E,3:

 

Try a form ω3 of vertical degree 1.

E > 

ω3evalDGax,yCu+bx,yCv+cx,yCu1+dx,yCu2+ex,yCv1+fx,yCv2

ω3ax,yCu+bx,yCv+cx,yCu1+dx,yCu2+ex,yCv1+fx,yCv2

(2.28)
E > 

EulerLagrangeω3

ax,ycxdy,bx,yexfy

(2.29)

 

Try a form ω4 of vertical degree 2.

E > 

ω4evalDGax,yCu&wCv+bx,yCu1&wCv2

ω4ax,yCuCv+bx,yCu1Cv2

(2.30)
E > 

EulerLagrangeω4

ax,yCvbxCv2bx,yCv1,2,ax,yCu+byCu1+bx,yCu1,2

(2.31)

 

Try a form ω5 of vertical degree 3.

E > 

ω5evalDGax,yCu&wCu1&wCv1

ω5ax,yCuCu1Cv1

(2.32)
E > 

EulerLagrangeω5

axCuCv1+ax,yCuCv1,1+2ax,yCu1Cv1,axCuCu1ax,yCuCu1,1

(2.33)

 

The Euler-Lagrange operator of the horizontal exterior derivative of any form vanishes, for example:

E > 

ηHorizontalExteriorDerivativeu2,3Cu1&wCv2

ηu1,2,3DxCu1Cv2+u2,3DxCu1Cv1,2u2,3DxCv2Cu1,1+u2,2,3DyCu1Cv2+u2,3DyCu1Cv2,2u2,3DyCv2Cu1,2

(2.34)
E > 

EulerLagrangeη

0DxCu,0DxCu

(2.35)

See Also

DifferentialGeometry

JetCalculus

Prolong

Transformation

Pullback

DifferentialEquationData