HigherEulerOperators - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


JetCalculus[HigherEulerOperators] - apply the higher Euler operators to a function or a differential bi-form

Calling Sequences

     HigherEulerOperators(F)

     HigherEulerOperators(ω)

Parameters

     F         - a function on the jet space of a fiber bundle

     ω         - a differential bi-form on the jet space a fiber bundle

 

Description

Examples

Description

• 

Let π:EM  be a fiber bundle, with base dimension n and fiber dimension m and let πk:JkE M  be the k-th jet bundle. Introduce local coordinates (xi, uα, uiα, uijα, ..., uij  ℓα , ...) where, as usual, if s:ME is a section and σ=jksx:ME is the k-jet of s, then

uij  ℓασ = k sα xxi xixℓ   and 1ijℓ dimM.

• 

The higher Euler operators are generalizations of the Euler-Lagrange operators and arise in many formulas in the variational calculus for higher order variational problems. They can be defined as follows. Let F be a function on JkE. Let I = i1i2ir be a multi-index. Then the r-th order higher Euler operator is defined by

 

EαIF = FuIα  r+11DhF uIhα +r+12Dhi F   uIhiα r+33DhijF     uIhijα +  .

 

If ω is a differential bi-form on JkE, then the Euler operators EαIω are defined by

 

 EαIω = ι αIω  r+1rDh ι αIhω +r+22Dhi ιαIhiω   r+33 Dhij ιαhijω + ,  

where  ι αij denotes interior product with the vector field             uijα .

• 

The first calling sequence HigherEulerOperators(F) returns a list of the higher Euler operators of the function F. Each element of the list is a function on jet spaces. The length of the list equals the fiber dimension of the jet bundle JkE, where k is the order of F.

• 

The second calling sequence HigherEulerOperators(ω) returns a list of the higher Euler operators of ω. Each element of the list is a differential form on jet space. The length of the list equals the fiber dimension of the jet bundle on which ω is defined.

• 

Higher Euler operators are studied in detail in S. J. Aldersley Higher Euler operators and some of their applications, J. Math Phys. 20 (1979) 522-531. We mention two important properties. First, if F and G are two functions on jet space, the product rule for the Euler-Lagrange operator is given in terms of the higher Euler operators by

EαFG = |I| 0 EαIFDIG+  DIFEαIG.

Second, a function F on jet space may be expressed as an r-fold total derivative if and only if EαIF = 0 for all multi-indices with length I r+1.

• 

The command HigherEulerOperators is part of the DifferentialGeometry:-JetCalculus package. It can be used in the form HigherEulerOperators(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-HigherEulerOperators(...).

Examples

with(DifferentialGeometry): with(JetCalculus):

 

Example 1.

Create the jet space J2ℝ2, ℝwith independent variables x,y and dependent variable u.

DGsetup([x, y], [u], E1, 2):

E1 > 

F := u[1]*u[2,2]^2;

Fu1u2,22

(2.1)

 

Apply the higher Euler operators to F.

E1 > 

EulerF := expand(HigherEulerOperators(F));

EulerF0,0,4u2,2,2u1,2+2u1u2,2,2,2,u2,22,4u2,2u1,24u1u2,2,2,0,0,2u1u2,2

(2.2)

 

To interpret this result we first list the current jet coordinates.

E1 > 

Vars := Tools:-DGinfo(E1, "FrameJetVariables");

Varsx,y,u,u1,u2,u1,1,u1,2,u2,2

(2.3)

 

Then the various components of the higher Euler operators for F will be labeled by these jet coordinates as:

E1 > 

Eu[0, 0] := EulerF[3]; Eu[1, 0] := EulerF[4]; Eu[0, 1] := EulerF[5]; Eu[2, 0] := EulerF[6]; Eu[1, 1] := EulerF[7]; Eu[0, 2] := EulerF[8];

Eu0,04u2,2,2u1,2+2u1u2,2,2,2

Eu1,0u2,22

Eu0,14u2,2u1,24u1u2,2,2

Eu2,00

Eu1,10

Eu0,22u1u2,2

(2.4)

 

Example 2.

Create the jet space J2ℝ2, ℝ2with independent variables x,y and dependent variables u, v.

E1 > 

DGsetup([x, y], [u, v], E2, 1):

E2 > 

G := u[1]*v[2]^2;

Gu1v22

(2.5)

 

Apply the higher Euler operators to G.

E2 > 

EulerG := expand(HigherEulerOperators(G));

EulerG0,0,2v2v1,2,2v2u1,22u1v2,2,v22,0,0,2u1v2

(2.6)

 

To interpret this result we first list the current jet coordinates.

E2 > 

Vars := Tools:-DGinfo(E2, "FrameJetVariables");

Varsx,y,u,v,u1,u2,v1,v2

(2.7)

 

Then the various components of the higher Euler operators for G will be labeled by these jet coordinates as:

E2 > 

Eu[0, 0] := EulerG[3]; Ev[0, 0] := EulerG[4]; Eu[1, 0] := EulerF[5]; Eu[0, 1] := EulerF[6]; Ev[1, 0] := EulerF[7]; Ev[0, 1] := EulerF[8];

Eu0,02v2v1,2

Ev0,02v2u1,22u1v2,2

Eu1,04u2,2u1,24u1u2,2,2

Eu0,10

Ev1,00

Ev0,12u1u2,2

(2.8)

 

Example 3.

Create the jet space J3,  with independent variable x and dependent variable u.

E2 > 

DGsetup([x], [u], E3, 3):

E3 > 

H := TotalDiff(u[]*u[1]^2, [1,1,1]);

H2u1,12+2u1u1,1,1u1+10u1u1,1+2uu1,1,1u1,1+5u12+4uu1,1u1,1,1+2uu1u1,1,1,1

(2.9)

 

Because H is a 3-fold total derivative, the first 3 Euler operators will vanish.

E3 > 

EulerG := expand(HigherEulerOperators(H));

EulerG0,0,0,0,2uu1,1u12,2uu1

(2.10)

 

Example 4.

Create the jet space J22, with independent variables x,y and dependent variable u.

E3 > 

DGsetup([x, y], [u], E1, 2):

 

Calculate the higher Euler operators for ω1.

E1 > 

omega1 := evalDG(Cu[1] &w Cu[2, 2]);

ω1Cu1Cu2,2

(2.11)
E1 > 

HigherEulerOperators(omega1);

0Cu,0Cu,2Cu1,2,2,Cu2,2,2Cu1,2,0Cu,0Cu,Cu1

(2.12)

 

Calculate the higher Euler operators for ω2.

E1 > 

omega2 := evalDG(Cu[1] &w Cu[2, 2] &w Dx);

ω2DxCu1Cu2,2

(2.13)
E1 > 

HigherEulerOperators(omega2);

0DxCu,0DxCu,2DxCu1,2,2,DxCu2,2,2DxCu1,2,0DxCu,0DxCu,DxCu1

(2.14)

See Also

DifferentialGeometry

JetCalculus

DGinfo

Prolong

Pullback

TotalDiff

Transformation