IntegrationByParts - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


JetCalculus[IntegrationByParts] - apply the integration by parts operator to a differential bi-form

Calling Sequences

     IntegrationByParts(ω )

Parameters

     ω     - a differential bi-form on a jet space

 

Description

Examples

Description

• 

Let π:EM be a fiber bundle, with base dimension n and fiber dimension m and let π∞:J∞E  M be the infinite jet bundle of E. Let (xi, uα, uiα, uijα, ..., uij  kα, ....) be a local system of jet coordinates and let Θα = duαuℓαdxℓ. Let Ωn,sJE be the space of all differential bi-forms of horizontal degree n and vertical degree s. Let ω Ωn,sJE and let Eαω  Ωn1,sJE be the components of the Euler-Lagrange operator applied to ω. Then the integration by parts operator I: Ωn,sJEΩn,sJE is defined by

Iω = 1sΘα Eαω.

The operator I is intrinsically characterized by the following properties.

[i] For any differential bi-form η of type n1, s,  IdHη = 0 where dH η is the horizontal exterior derivative of η.

[ii]  If ω is a type n,s bi-form and Iω =0, then there exists a bi-form of type n1, s such that ω = dH η.

[iii] I is a projection operator in the sense that II = I.

• 

The command IntegrationByParts(ω) returns the typen, s bi-form Iω.

• 

The command IntegrationByParts is part of the DifferentialGeometry:-JetCalculus package. It can be used in the form IntegrationByParts(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-IntegrationByParts(...).

Examples

with(DifferentialGeometry): with(JetCalculus):

 

Example 1.

Create the jet space J3E for the bundle E with coordinates x,u x.

DGsetup([x], [u], E, 3):

 

Apply the integration by parts operator to a bi-form ω1 of vertical degree 1.

E > 

PDEtools[declare](a(x), b(x), c(x), quiet):

E > 

omega1 := Dx &wedge evalDG(a(x)*Cu[] + b(x)*Cu[1] + c(x)*Cu[1, 1] + d(x)*Cu[1, 1, 1]);

ω1aDxCu+bDxCu1+cDxCu1,1+dxDxCu1,1,1

(2.1)
E > 

IntegrationByParts(omega1);

dx,x,x+cx,xbx+aDxCu

(2.2)

 

Apply the integration by parts operator to a bi-form ω2 of vertical degree 2.

E > 

omega2 := Dx &wedge evalDG(a(x)*Cu[]&w Cu[1] + b(x)*Cu[] &w Cu[1,1] + c(x)*Cu[1] &w Cu[1,1]);

ω2aDxCuCu1+bDxCuCu1,1+cDxCu1Cu1,1

(2.3)
E > 

omega3 := IntegrationByParts(omega2);

ω3cx,x2bx+aDxCuCu13cx2DxCuCu1,1cDxCuCu1,1,1

(2.4)

 

Verify that the integration by parts operator is a projection operator by applying it to ω3 – the result is ω3 again.

E > 

IntegrationByParts(omega3);

cx,x2bx+aDxCuCu13cx2DxCuCu1,1cDxCuCu1,1,1

(2.5)

 

Example 3.

Create the jet space J3E for the bundle E with coordinates x,y, u, v x,y.

E > 

DGsetup([x, y], [u, v], E, 3):

E > 

PDEtools[declare](a(x, y), b(x, y), c(x, y), d(x, y), e(x, y), f(x, y), quiet):

 

Apply the integration by parts operator to a type (2, 1) bi-form ω4.

E > 

omega4 := Dx &wedge Dy &wedge evalDG(a(x, y)*Cu[] + b(x, y)*Cv[] + c(x, y)*Cu[1] + d(x, y)*Cu[2] + e(x, y)*Cv[1] + f(x, y)*Cv[2]);

ω4aDxDyCu+bDxDyCv+cDxDyCu1+dDxDyCu2+eDxDyCv1+fDxDyCv2

(2.6)
E > 

IntegrationByParts(omega4);

dycx+aDxDyCu+fyex+bDxDyCv

(2.7)

 

Apply the integration by parts operator to a type (2, 2) bi-form ω5.

E > 

omega5 := Dx &wedge Dy &wedge evalDG(a(x, y)*Cu[1] &w Cv[1]);

ω5aDxDyCu1Cv1

(2.8)
E > 

IntegrationByParts(omega5);

ax2DxDyCuCv1a2DxDyCuCv1,1+ax2DxDyCvCu1+a2DxDyCvCu1,1

(2.9)

 

Apply the integration by parts operator to a (2, 3) bi-form ω6which is the horizontal exterior derivative of a type (1, 3) bi-form η.

E > 

eta := evalDG(u[1]*Dx &w Cu[2] &w Cv[1] &w Cu[1, 1]);

ηu1DxCu2Cv1Cu1,1

(2.10)
E > 

omega6 := HorizontalExteriorDerivative(eta);

ω6u1,2DxDyCu2Cv1Cu1,1u1DxDyCu2Cv1Cu1,1,2+u1DxDyCu2Cu1,1Cv1,2u1DxDyCv1Cu1,1Cu2,2

(2.11)
E > 

IntegrationByParts(omega6);

0DxDyCuCvCu1

(2.12)

See Also

DifferentialGeometry

JetCalculus

HorizontalExteriorDerivative

HorizontalHomotopy