AgemoPGroup - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


GroupTheory

  

AgemoPGroup

  

construct an Agemo of a p-group

  

OmegaPGroup

  

construct an Omega of a p-group

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

AgemoPGroup( G )

AgemoPGroup( n, G )

OmegaPGroup( G )

OmegaPGroup( n, G )

Parameters

G

-

: PermutationGroup; a permutation p-group, for a prime number p

n

-

: nonnegint; (optional) a non-negative integer, default n=1

Description

• 

If n is a non-negative integer, and G is a finite p-group, then the subgroup ℧nG is defined to be the subgroup of G generated by elements of G of the form gpn, as g ranges over all elements of G.

• 

The AgemoPGroup( n, G ) command computes the subgroup ℧nG of G, where G is a permutation p-group, for some prime p.

• 

The first argument n is optional and is equal to 1 by default. That is, the command AgemoPGroup( G ) is equivalent to AgemoPGroup( 1, G ).

• 

For a p-group G, and a non-negative integer n, the subgroup ΩnG is defined to be the subgroup generated by the elements g such that gpn = 1, for gG. That is, the subgroup generated by those members of G whose order divides pn.

• 

The OmegaPGroup( n, G ) command computes ΩnG for a permutation group G of prime power order.

• 

When called with two arguments, n and G, the indicated subgroup ΩnG is returned. When called with just one argument G, the subgroup Ω1G is returned.

Examples

withGroupTheory:

GDihedralGroup8

GD8

(1)

AAgemoPGroupG

A&Agemo;1D8

(2)

IsCyclicA

true

(3)

GroupOrderA

4

(4)

AAgemoPGroup2,G

A&Agemo;2D8

(5)

GroupOrderA

2

(6)

AgemoPGroup0,G

D8

(7)

GCyclicGroup16807

GC16807

(8)

seqGroupOrderAgemoPGroupn,G,n=0..5

16807,2401,343,49,7,1

(9)

GQuaternionGroup5

G1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,1617,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,1,31,9,232,30,10,223,29,11,214,28,12,205,27,13,196,26,14,187,25,15,178,24,16,32

(10)

WOmegaPGroupG

WΩ11,2,3,4,5,6,7,8,9,10,11,12,13,14,15,1617,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,1,31,9,232,30,10,223,29,11,214,28,12,205,27,13,196,26,14,187,25,15,178,24,16,32

(11)

GroupOrderOmegaPGroup2,G

32

(12)

GCyclicGroup625

GC625

(13)

seqGroupOrderOmegaPGroupn,G,n=0..4

1,5,25,125,625

(14)

While it is immediate from the definition that ΩnGΩn+1G, for all n and any finite p-group G, equality may occur.

GSmallGroup32,38:

GroupOrderOmegaPGroup1,G

16

(15)

GroupOrderOmegaPGroup2,G

16

(16)

However, we must eventually reach the entire group G.

GroupOrderG=GroupOrderOmegaPGroup3,G

32=32

(17)

GWreathProductSmallGroup27,4,CyclicGroup3

G < a permutation group on 81 letters with 4 generators >

(18)

WOmegaPGroupG

WΩ1 < a permutation group on 81 letters with 4 generators >

(19)

GroupOrderW

19683

(20)

GroupOrderOmegaPGroup2&comma;G

59049

(21)

GDirectProductQuaternionGroup&dollar;4&comma;CyclicGroup4&comma;DihedralGroup16&dollar;3

G < a permutation group on 84 letters with 15 generators >

(22)

GroupOrderG

536870912

(23)

GroupOrderOmegaPGroup1&comma;G

1048576

(24)

GroupOrderOmegaPGroup2&comma;G

536870912

(25)

See Also

GroupTheory[CyclicGroup]

GroupTheory[DihedralGroup]

GroupTheory[DirectProduct]

GroupTheory[GroupOrder]

GroupTheory[IsCyclic]

GroupTheory[IsPGroup]

GroupTheory[QuaternionGroup]

GroupTheory[SmallGroup]

GroupTheory[WreathProduct]