GroupTheory
FrattiniSubgroup
construct the Frattini subgroup of a group
Calling Sequence
Parameters
Description
Examples
Compatibility
FrattiniSubgroup( G )
G
-
a group
The Frattini subgroup of a group G is the intersection of the maximal subgroups of G, or G itself in case G has no maximal subgroups.
The Frattini subgroup is equal to the set of "non-generators" of G. An element g of G is a non-generator if, whenever G is generated by a set S containing g, it is also generated by S∖g.
The Frattini subgroup of a finite group is nilpotent.
The FrattiniSubgroup( G ) command returns the Frattini subgroup of a group G.
with⁡GroupTheory:
G ≔ SmallGroup⁡32,5:
F ≔ FrattiniSubgroup⁡G
F≔Φ⁡ < a permutation group on 32 letters with 5 generators >
GroupOrder⁡F
8
IsNilpotent⁡F
true
F ≔ FrattiniSubgroup⁡DihedralGroup⁡12
F≔Φ⁡D12
2
GroupOrder⁡FrattiniSubgroup⁡Alt⁡4
1
Since a quasicyclic group has no maximal subgroups, it is equal to its Frattini subgroup.
G ≔ QuasicyclicGroup⁡7
G≔ℤ7∞
FrattiniSubgroup⁡G
ℤ7∞
F ≔ FrattiniSubgroup⁡DirectProduct⁡SemiDihedralGroup⁡6,GL⁡2,3
F≔Φ⁡ < a permutation group on 32 letters with 4 generators >
AreIsomorphic⁡F,DirectProduct⁡FrattiniSubgroup⁡SemiDihedralGroup⁡6,FrattiniSubgroup⁡GL⁡2,3
The GroupTheory[FrattiniSubgroup] command was introduced in Maple 17.
For more information on Maple 17 changes, see Updates in Maple 17.
See Also
GroupTheory[AlternatingGroup]
GroupTheory[DihedralGroup]
GroupTheory[GroupOrder]
GroupTheory[IsNilpotent]
GroupTheory[QuasicyclicGroup]
GroupTheory[SmallGroup]
Download Help Document