GroupTheory
MinimumPermutationRepresentationDegree
compute the minimum degree of a permutation representation of a group
Calling Sequence
Parameters
Description
Examples
Compatibility
MinimumPermutationRepresentationDegree( G )
MinPermRepDegree( G )
G
-
a group
Cayley's Theorem asserts that each finite group is isomorphic to a group of permutations of a finite set. In other words, each finite group G can be embedded in a symmetric group Sn, for some positive integer n.
The MinimumPermutationRepresentationDegree( G ) command returns the minimum degree of a faithful permutation representation for a (finite) group G. That is the least positive integer n such that G embeds in the symmetric group of degree n.
You can use the alias MinPermRepDegree instead of the longer command name MinimumPermutationRepresentationDegree.
with⁡GroupTheory:
MinPermRepDegree⁡CyclicGroup⁡12
7
MinPermRepDegree⁡GL⁡2,5
24
MinPermRepDegree⁡QuaternionGroup⁡
8
MinPermRepDegree⁡PSL⁡5,q
q4+q3+q2+q+1
The GroupTheory[MinimumPermutationRepresentationDegree] command was introduced in Maple 2016.
For more information on Maple 2016 changes, see Updates in Maple 2016.
See Also
GroupTheory[CyclicGroup]
GroupTheory[GL]
GroupTheory[SymmetricGroup]
Download Help Document