GroupTheory
Steinberg3D4
Calling Sequence
Parameters
Description
Examples
Compatibility
Steinberg3D4( q )
q
-
algebraic; an algebraic expression, taken to be a prime power
The Steinberg group D43⁡q , for a prime power q, is a simple group of Lie type.
The Steinberg3D4( q ) command returns a symbolic group representing the Steinberg group D43⁡q or, if q=2 or q=3, a permutation group isomorphic to D43⁡q .
with⁡GroupTheory:
G ≔ Steinberg3D4⁡2
G≔1,23,54,76,108,139,1511,1812,2014,2316,2617,2819,3121,3422,3524,3825,3327,4229,4530,4732,5036,5537,5739,6040,6241,6443,6744,5446,7148,7451,7852,8053,8256,8658,8959,9161,9463,9665,9966,9868,10369,10470,10672,10973,11175,11476,11677,11879,12181,12483,12784,12985,13188,13590,13892,14193,14395,14697,148100,152101,154102,156105,159107,162108,164110,165112,167113,169115,171117,174119,177120,179122,182123,183125,186126,188128,190130,193132,196133,198134,200136,203137,205139,207140,209142,212144,215145,217147,220149,222150,224151,226153,229155,232157,235158,236160,239161,241163,244166,247168,250170,253172,255173,257175,260176,262178,265181,269184,273185,275187,277191,281192,283195,242197,288199,290201,293202,295204,297206,300208,303210,305211,307213,310214,311216,274218,316219,318221,321223,285225,325227,328228,330230,280231,334233,336234,338237,339238,341240,344243,346245,349246,351248,354249,356251,359252,361254,364256,367258,263259,371261,373264,376266,317267,379268,375270,383271,385272,387276,391278,358279,393282,397284,399286,401287,403289,406291,408292,410294,413296,416298,419299,421301,340304,426306,429308,312309,432313,436314,437315,439319,444320,446322,448324,450326,402327,452329,455331,457335,462337,463342,465343,467345,380347,352348,471350,474353,476355,478357,480360,422362,386363,484365,425366,423368,487369,488372,491374,492377,495378,496381,497382,499384,502388,506389,508390,510392,513394,516395,459398,518400,521404,524405,525407,515409,529411,532412,534414,536415,537417,540418,539420,544424,546427,549428,551430,553431,550433,557434,559435,561438,565440,568441,569442,571443,573445,576447,578449,579451,581453,584454,586456,589458,591460,594461,545464,596468,585469,483470,601472,602473,604475,606477,608479,609481,612482,614486,616489,595490,619493,621494,519498,625500,620501,628504,629505,631507,632509,634511,600512,638514,641517,535520,592522,647523,640526,651527,563528,654530,657531,603533,643538,661541,659542,653547,574548,635552,618554,665555,673556,660558,676560,679562,682564,633566,658567,613570,688572,666575,693577,694580,697582,698583,639587,683590,704593,663597,691598,702599,709605,715607,717610,687611,720615,723617,669622,727624,728626,675627,730630,732636,648637,736642,664644,655645,722646,672649,745650,746652,716656,749662,701667,708668,754670,707671,695674,719677,755678,737680,726684,706685,765686,767689,770692,773696,775699,712700,739703,778705,763710,782711,783713,784714,785718,786721,789724,791725,757729,793731,794733,760734,795735,787738,798740,799741,801742,753743,744747,796748,756750,772751,804752,805758,780759,777761,766762,807764,790768,808769,809771,810774,797776,800779,788781,812792,816802,817803,811806,815813,818814,819,1,3,6,11,19,32,51,79,1222,4,8,14,24,39,61,95,1475,9,16,27,43,68,67,102,1577,12,2110,17,29,46,72,110,166,248,35513,22,36,56,87,134,201,294,41415,25,40,63,97,149,223,324,10918,30,48,75,115,172,256,368,44620,33,52,81,125,187,278,89,13723,37,58,90,139,208,179,267,38026,41,65,100,153,230,333,460,59528,44,69,105,160,240,260,71,10831,49,76,117,175,261,361,482,6234,53,83,128,191,282,257,369,48935,54,84,130,194,285,182,271,38638,59,92,142,213,167,249,357,35442,66,101,155,233,337,106,161,24245,70,107,163,245,350,475,255,36647,73,112,168,251,360,481,613,72250,77,119,178,266,159,238,342,46655,85,132,197,224,156,234,300,42357,88,136,204,298,420,437,564,68460,93,144,216,314,438,566,686,76864,98,150,225,326,451,582,604,71474,113,138,206,301,424,547,608,71978,120,180,268,381,498,626,359,46280,123,184,274,389,509,635,253,36382,126,189,280,395,517,643,325,23586,133,199,291,409,530,183,272,31091,140,210,306,269,382,500,413,44894,145,218,317,442,572,307,430,55496,121,181,270,384,503,399,520,64599,151,227,329,200,292,411,533,103104,158,237,340,464,597,124,185,276111,131,195,286,402,523,648,744,732114,170,164,246,352,471,452,583,699116,173,258,370,379,196,287,404,502118,176,263,375,346,273,388,507,236127,177,264,377,406,527,653,647,743129,192,174,259,372,436,563,683,764135,202,229,332,459,593,706,478,165141,211,308,431,555,674,760,783,673143,214,312,435,562,467,599,710,186146,219,319,445,577,621,344,468,600148,221,322,449,580,651,364,485,303152,228,331,458,592,499,627,731,717154,231,335,339,367,486,617,497,624162,243,347,470,429,450,484,615,724169,252,362,483,349,473,605,581,474171,254,365,262,374,493,622,586,701188,279,394,283,398,519,594,707,629190,193,284,400,522,232,207,302,425198,289,239,343,265,378,492,222,323203,296,417,541,664,755,328,454,587205,299,422,457,455,588,702,463,373209,304,427,550,250,358,247,353,477212,309,433,558,677,602,712,606,716215,313,341,290,407,496,488,618,403217,315,440,444,575,679,534,659,752220,320,351,387,505,416,539,662,754226,327,453,585,700,777,808,579,696241,345,469,601,711,356,479,610,576244,348,472,603,713,775,786,549,669275,390,511,637,737,778,559,678,762277,392,514,642,741,297,418,542,665281,396,397,518,644,536,421,545,516288,405,526,652,748,791,694,321,447293,412,535,660,753,439,567,383,501295,415,538,540,663,619,725,792,789305,428,552,671,759,785,401,338,336311,434,560,680,763,318,443,574,692316,441,570,689,771,784,814,697,776330,456,590,596,708,730,782,813,804334,461,408,528,655,578,695,510,636371,490,620,726,521,646,742,802,584376,494,623,682,727,591,705,780,811385,504,630,733,551,670,614,723,487391,512,639,532,557,675,513,640,739393,515,569,657,750,628,632,571,690410,531,658,751,537,508,633,491,506419,543,666,756,616,561,681,544,661426,548,668,758,806,654,495,465,598432,556,480,611,546,667,757,529,656476,607,718,787,815,816,568,687,769524,649,612,721,790,638,738,794,773525,650,747,704,779,693,774,688,728553,672,609,573,691,772,745,589,703565,685,766,805,736,797,749,631,734625,729,676,761,799,746,803,709,781634,735,796,807,818,810,765,801,795641,740,800,817,798,812,770,767,715720,788,809
GroupOrder⁡G
211341312
Degree⁡G
819
IsSimple⁡G
true
IsPrimitive⁡G
G ≔ Steinberg3D4⁡3:
26572
IsSimple⁡Steinberg3D4⁡4096
GroupOrder⁡Steinberg3D4⁡27
11956114445971661401099296184508431605312
ClassNumber⁡Steinberg3D4⁡32
1082405
G ≔ Steinberg3D4⁡q
G≔D43⁡q
ClassNumber⁡G
q4+q3+q2+q+5+irem⁡q,2
The GroupTheory[Steinberg3D4] command was introduced in Maple 2021.
For more information on Maple 2021 changes, see Updates in Maple 2021.
See Also
GroupTheory[ClassNumber]
GroupTheory[ExceptionalGroup]
GroupTheory[GroupOrder]
GroupTheory[IsSimple]
GroupTheory[MinPermRepDegree]
GroupTheory[Steinberg3D4]
Download Help Document