SylowBasis - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


GroupTheory

  

SylowBasis

  

construct a Sylow basis for a finite soluble group

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

SylowBasis( G )

Parameters

G

-

a soluble permutation group

Description

• 

Let G be a finite soluble group.  A Sylow basis for G is a collection B of Sylow subgroups of G, one for each prime divisor of the order of G, such that PQ=QP, for each pair P,Q of Sylow subgroups in B.

• 

The existence of a Sylow basis for G is equivalent to the solubility of G.

• 

The SylowBasis( G ) command constructs a Sylow basis for the soluble group G. If the group G is not soluble, then an exception is raised. The group G must be an instance of a permutation group.

Examples

withGroupTheory:

GAlt4

GA4

(1)

BSylowBasisG

B1,23,4,1,32,4,1,3,2

(2)

mapGroupOrder,B

4,3

(3)

evalbFrobeniusProductB1,B2,G=FrobeniusProductB2,B1,G

true

(4)

GDihedralGroup30

GD30

(5)

BSylowBasisG

B1,7,13,19,252,8,14,20,263,9,15,21,274,10,16,22,285,11,17,23,296,12,18,24,30,1,11,212,12,223,13,234,14,245,15,256,16,267,17,278,18,289,19,2910,20,30,1,162,173,184,195,206,217,228,239,2410,2511,2612,2713,2814,2915,30,1,92,83,74,610,3011,2912,2813,2714,2615,2516,2417,2318,2219,21

(6)

mapGroupOrder,B

5,3,4

(7)

andseqFrobeniusProductS1,S2,G=FrobeniusProductS2,S1,G,S=combinat:-chooseB,2

true

(8)

GFrobeniusGroup300,3

G < a permutation group on 100 letters with 5 generators >

(9)

BSylowBasisG&colon;

mapGroupOrder&comma;B

25&comma;4&comma;3

(10)

andseqFrobeniusProductS1&comma;S2&comma;G&equals;FrobeniusProductS2&comma;S1&comma;G&comma;S&equals;combinat:-chooseB&comma;2

true

(11)

SylowBasisPSL4&comma;3

Error, (in GroupTheory:-SylowBasis) group must be soluble

SylowBasisSymm5

Error, (in GroupTheory:-SylowBasis) group must be soluble

Compatibility

• 

The GroupTheory[SylowBasis] command was introduced in Maple 2019.

• 

For more information on Maple 2019 changes, see Updates in Maple 2019.

See Also

combinat[choose]

GroupTheory

GroupTheory[AlternatingGroup]

GroupTheory[DihedralGroup]

GroupTheory[FrobeniusGroup]

GroupTheory[FrobeniusProduct]

GroupTheory[IsSoluble]

GroupTheory[PSL]

GroupTheory[SylowSubgroup]

GroupTheory[SymmetricGroup]