QEfficientRepresentation - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


QDifferenceEquations

  

QEfficientRepresentation

  

construct the four efficient representations of a q-hypergeometric term

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

QEfficientRepresentation[1](H, q, n)

QEfficientRepresentation[2](H, q, n)

QEfficientRepresentation[3](H, q, n)

QEfficientRepresentation[4](H, q, n)

Parameters

H

-

q-hypergeometric term in q^n

q

-

name used as the parameter q, usually q

n

-

variable

Description

• 

Let H be a q-hypergeometric term in qn. The QEfficientRepresentation[i](H,q,n) command constructs the ith efficient representation of H of the form Hn=CαnVqnQn where C, α are constant and Qn is a product of QPochhammer-function values and their reciprocals. Additionally,

1. 

Qn has the minimal number of factors,

2. 

Vqn is a rational function which is minimal in one sense or another, depending on the particular q-rational canonical form chosen to represent the certificate of Hqn.

• 

If i=1 then degreedenomV is minimal; if i=2 then degreenumerV is minimal; if i=3 then degreenumerV+degreedenomV is minimal, and under this condition, degreedenomV is minimal; if i=4 then degreenumerV+degreedenomV is minimal, and under this condition, degreenumerV is minimal.

• 

If QEfficientRepresentation is called without an index, the first efficient representation is constructed.

Examples

withQDifferenceEquations:

HProductqk+q2qk+1qk+q5q3qk+q4q2q3qk+q21q12qk+q21qk+q5qk+q42q4qk+1qk+q21q2qk+q21,k=0..n1

Hk=0n1qk+q2qk+1qk+q5q3qk+q4q2q3qk+q21q12qk+q21qk+q5qk+q42q4qk+1qk+q21q2qk+q21

(1)

QEfficientRepresentation1H,q,n

q66qn+q21q22q3+qn2q4+qn2q+qnq2+qnqn+q21q11qn+q21q10qn+q21q9qn+q21q8qn+q21q7qn+q21q6qn+q21q5qn+q21q4qn+q21q3qn+q21qq2+qn1q212q6nQPochhammer1q4+q2,q,nQPochhammer1q5+q3,q,n2q212q3+12q4+12q+1q2+1q11+q21q10+q21q9+q21q8+q21q7+q21q6+q21q5+q21q4+q21q3+q21q2+q1QPochhammerq4,q,nQPochhammer1q5,q,n

(2)

QEfficientRepresentation2H,q,n

2q5q3+1q2+q1q+1q2+1q4q2+12q3q+12q3+qnq4+qnq212q6nQPochhammerq12q21,q,nQPochhammerq3q21,q,nq5q4+1q3+qnq2qn+q4q22qn+1q3qn+1q2qn+1qqn+1qn+q21qq2+qn1qn+q5q3QPochhammer1q4,q,nQPochhammer1q5,q,n

(3)

QEfficientRepresentation3H,q,n

q2q3q+1q4q2+1q3+qn2q4+qn2q+qnq2+qnqn+q21q2q212q6nQPochhammer1q5+q3,q,nQPochhammerq12q21,q,nq3+12q4+12q+1q2+12q21q3+qnqqn+q4q2QPochhammerq4,q,nQPochhammer1q5,q,n

(4)

QEfficientRepresentation4H,q,n

2q4q2+1q3q+1q+1q2+1q3+qnq4+qnqn+q21q2q212q6nQPochhammerq12q21,q,nQPochhammer1q5+q3,q,nq42q21q4+1qn+1q3qn+1q2qn+1qqn+1q3+qnqqn+q4q2QPochhammer1q5,q,nQPochhammer1q4,q,n

(5)

RegularQPochhammerFormH,q,n

q212q6nQPochhammerq12q21,q,nQPochhammer1q5+q3,q,nQPochhammer−1,q,nQPochhammer1q2,q,nQPochhammer1q4+q2,q,nQPochhammerq3q21,q,nQPochhammerq4,q,nQPochhammerq2q21,q,nQPochhammer1q4,q,n2QPochhammer1q2+1,q,nQPochhammer1q5,q,n

(6)

References

  

Abramov, S.A.; Le, H.Q.; and Petkovsek, M. "Efficient Representations of (q-)Hypergeometric Terms and the Assignment Problem." Submitted.

  

Abramov, S.A.; Le, H.Q.; and Petkovsek, M. "Rational Canonical Forms and Efficient Representations of Hypergeometric Terms." Proc. ISSAC'2003, pp. 7-14. 2003.

See Also

QDifferenceEquations[QMultiplicativeDecomposition]

QDifferenceEquations[QObjects]

QDifferenceEquations[QRationalCanonicalForm]

QDifferenceEquations[RegularQPochhammerForm]

 


Download Help Document