QMultiplicativeDecomposition - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


QDifferenceEquations

  

QMultiplicativeDecomposition

  

construct the four minimal multiplicative decompositions of a q-hypergeometric term

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

QMultiplicativeDecomposition[1](H, q, n, k)

QMultiplicativeDecomposition[2](H, q, n, k)

QMultiplicativeDecomposition[3](H, q, n, k)

QMultiplicativeDecomposition[4](H, q, n, k)

Parameters

H

-

q-hypergeometric term in q^n

q

-

name used as the parameter q, usually q

n

-

variable

k

-

name

Description

• 

Let H be a q-hypergeometric term in q^n. The QMultiplicativeDecomposition[i](H,q,n,k) command constructs the ith minimal multiplicative decomposition of H of the form Hqn=Wqnk=n0n1Fqk where Wqn,Fqn are rational functions of q^n, degreenumerFqn and degreedenomFqn have minimal possible values, for i=1,2,3,4.

• 

Additionally, if i=1 then degreedenomW is minimal; if i=2 then degreenumerW is minimal; if i=3 then degreenumerW+degreedenomW is minimal, and under this condition, degreedenomW is minimal; if i=4 then degreenumerW+degreedenomW is minimal, and under this condition, degreenumerW is minimal.

  

If QMultiplicativeDecomposition is called without an index, the first minimal multiplicative decomposition is constructed.

Examples

withQDifferenceEquations:

HProductqk+q2qk+1qk+q5q3qk+q4q2q3qk+q21q12qk+q21qk+q5qk+q42q4qk+1qk+q21q2qk+q21,k=0..n1

Hk=0n1qk+q2qk+1qk+q5q3qk+q4q2q3qk+q21q12qk+q21qk+q5qk+q42q4qk+1qk+q21q2qk+q21

(1)

QMultiplicativeDecomposition1H,q,n,k

1q10nqn+q21q22q3+qn2q4+qn2q+qnq2+qnqn+q21q11qn+q21q10qn+q21q9qn+q21q8qn+q21q7qn+q21q6qn+q21q5qn+q21q4qn+q21q3qn+q21qq2+qn1k=0n1qk+q5q3qk+q4q2qk+q5qk+1q41+q21q22q3+12q4+12q+1q2+11+q21q111+q21q101+q21q91+q21q81+q21q71+q21q61+q21q51+q21q41+q21q31+q21qq2

(2)

QMultiplicativeDecomposition2H,q,n,k

2q3q+12q4q2+121+1q31+1q21+1q1+q21qq2q5q3+1q18nq3+qnq4+qnk=0n1qk+q21q3qk+q21q12qk+q4qk+q5q3+1q4+1q3+qnq2qn+q4q22qn+1q3qn+1q2qn+1qqn+1qn+q21qq2+qn1qn+q5q3

(3)

QMultiplicativeDecomposition3H,q,n,k

q3q+1q4q2+1q4nq3+qn2q4+qn2q+qnq2+qnqn+q21q2k=0n1qk+q5q3qk+q21q12qk+q5qk+1q4q3+12q4+12q+1q2+11+q21q2q3+qnqqn+q4q2

(4)

QMultiplicativeDecomposition4H,q,n,k

2q3q+1q4q2+11+1q31+1q21+1qq12nqn+q21q2q3+qnq4+qnk=0n1qk+q5q3qk+q21q12qk+q5qk+q41+q21q2q3+1q4+1q3+qnqqn+q4q2qn+1q3qn+1q2qn+1qqn+1

(5)

References

  

Abramov, S.A.; Le, H.Q.; and Petkovsek, M. "Efficient Representations of (q-)Hypergeometric Terms and the Assignment Problem." Submitted.

  

Abramov, S.A.; Le, H.Q.; and Petkovsek, M. "Rational Canonical Forms and Efficient Representations of Hypergeometric Terms." Proc. ISSAC'2003, pp. 7-14. 2003.

See Also

QDifferenceEquations[QEfficientRepresentation]

QDifferenceEquations[QObjects]

QDifferenceEquations[QRationalCanonicalForm]

 


Download Help Document