QDifferenceEquations
QSimpComb
simplification of expressions involving q-hypergeometric terms
QSimplify
Calling Sequence
Parameters
Description
Examples
References
QSimpComb(f)
QSimplify(f)
f
-
algebraic expression
The commands QSimpComb and QSimplify are for simplification of expressions involving q-hypergeometric terms. For a function fqk, the main use of QSimpComb is for detecting if fqk is a q-hypergeometric term in qk. That is, if fqk+1fqk is a rational function in qk (see IsQHypergeometricTerm). If the result is not a rational function, QSimplify returns in general a more compact answer.
This implementation is mainly based on the implementation by H. Boeing, W. Koepf. See the Reference Section.
withQDifferenceEquations:
H≔q2−12q6nQPochhammer1−q5+q3,q,nQPochhammer1−q4+q2,q,nQPochhammer−1q2−1q3,q,nQPochhammer−1q2,q,nQPochhammer−1q2−1q12,q,nQPochhammer−1,q,nQPochhammer−1q2−1q2,q,nQPochhammer−1q5,q,nQPochhammer−1q4,q,n2QPochhammer−q4,q,nQPochhammer1−q2+1,q,n
H≔q2−12q6nQPochhammer1−q5+q3,q,nQPochhammer1−q4+q2,q,nQPochhammer−q3q2−1,q,nQPochhammer−1q2,q,nQPochhammer−q12q2−1,q,nQPochhammer−1,q,nQPochhammer−q2q2−1,q,nQPochhammer−1q5,q,nQPochhammer−1q4,q,n2QPochhammer−q4,q,nQPochhammer1−q2+1,q,n
Apply QSimpComb to the consecutive ratio Hn+1Hn. If the result is a rational function in qn, then H is a q-hypergeometric term.
QSimpCombsubsn=n+1,HH
q5−q3+qnq2+qnqnq12+q2−11+qnqnq3+q2−1q4−q2+qnq2qn+q2−1q2+qn−1q4+qn21+qnq4q5+qn
IsQHypergeometricTermH,n,qn=N
true
f≔QPochhammeraq−kn,q,n−QPochhammerqa,q,knQPochhammerqa,q,kn−n−anqbinomialn,2−kn2
f≔QPochhammeraq−kn,q,n−QPochhammerqa,q,kn−anqn2−kn2QPochhammerqa,q,kn−n
QSimplifyf
0
f≔1QPochhammera,q,2nQPochhammera,q2,nQPochhammeraq,q2,n
f≔QPochhammera,q2,nQPochhammerqa,q2,nQPochhammera,q,2n
QSimpCombf
QPochhammera,q2,nQPochhammerqa,q2,nQPochhammera,q,2n
1
Boeing, H., and Koepf, W. "Algorithms for q-hypergeometric summation in computer algebra." Journal of Symbolic Computation. Vol. 11. (1999): 1-23.
See Also
QDifferenceEquations[IsQHypergeometricTerm]
QDifferenceEquations[QObjects]
Download Help Document