Newton-Cotes Formula - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Newton-Cotes Formulae

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

ApproximateInt(f(x), x = a..b, method = newtoncotes[N], opts)

ApproximateInt(f(x), a..b, method = newtoncotes[N], opts)

ApproximateInt(Int(f(x), x = a..b), method = newtoncotes[N], opts)

Parameters

f(x)

-

algebraic expression in variable 'x'

x

-

name; specify the independent variable

a, b

-

algebraic expressions; specify the interval

N

-

positive integer

opts

-

equation(s) of the form option=value where option is one of boxoptions, functionoptions, iterations, method, outline, output, partition, pointoptions, refinement, showarea, showfunction, showpoints, subpartition, view, or Student plot options; specify output options

Description

• 

The ApproximateInt(f(x), x = a..b, method = newtoncotes[N], opts) command approximates the integral of f(x) from a to b by using the Nth degree Newton-Cotes formula. The first two arguments (function expression and range) can be replaced by a definite integral.

• 

If the independent variable can be uniquely determined from the expression, the parameter x need not be included in the calling sequence.

• 

Given a partition P=a=x0,x1,...,xN=b of the interval a,b, the Nth degree Newton-Cotes formula approximates the integral on each subinterval xi1,xi by integrating the Nth degree polynomial which interpolates N1 equally spaced points between the end points of the interval.

  

The Newton-Cotes formulae are generalizations of the simpler polynomial interpolation routines.  The following table gives the correspondence between the other methods and the degree.

Equivalent Method

Order

Trapezoid

1

Simpson's Rule

2

Simpson's 3/8 Rule

3

Boole's Rule

4

• 

By default, the interval is divided into 10 equal-sized subintervals.

• 

For the options opts, see the ApproximateInt help page.

• 

This rule can be applied interactively, through the ApproximateInt Tutor.

Examples

intsinx,x=0...5.0

0.7163378145

(1)

withStudentCalculus1:

ApproximateIntsinx,x=0...5.0,method=newtoncotes1

0.7013515555

(2)

ApproximateIntsinx,x=0...5.0,method=newtoncotes2

0.7163534765

(3)

ApproximateIntsinx,x=0...5.0,method=newtoncotes3

0.7163447696

(4)

ApproximateIntsinx,x=0...5.0,method=newtoncotes4

0.7163378087

(5)

ApproximateIntsinx,x=0...5.0,method=newtoncotes6

0.7163378145

(6)

ApproximateIntxx2x3,0..5,method=simpson,output=plot

ApproximateInttanx2x,x=1..1,method=simpson,output=plot,partition=50

To play the following animation in this help page, right-click (Control-click, on Mac) the plot to display the context menu.  Select Animation > Play.

ApproximateIntlnx,x=1..100,method=simpson,output=animation

See Also

Boole's Rules

plot/options

Simpson's 3/8 Rule

Simpson's Rule

Student

Student plot options

Student[Calculus1]

Student[Calculus1][ApproximateInt]

Student[Calculus1][ApproximateIntTutor]

Student[Calculus1][RiemannSum]

Student[Calculus1][VisualizationOverview]

Trapezoidal Rule