Multi Convection - MapleSim Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Multi Convection

Multiple Heat Convection

Description

The Multi Convection component models multiple Heat Convections.

The total number of Heat Convection components is determined by the .

The following image uses Heat Convection components to illustrate the behavior of the Multi Convection component.

 Convection type Use reference for Natural / Forced Natural / Forced convection type Use Correction input Natural false - false or true true Vertical (Ra:10^4-10^13) false or true Horizontal Upper Warm(Ra:10^4-10^11) false or true Horizontal Upper Cold (Ra:10^5-10^11) false or true Forced false - false or true true Tube and Duct false or true Over flat plates false or true Over a cylinder false or true Over a sphere false or true Constant - - false or true External input - - false or true

(For details, see Heat Convection help).

 Equations (For details, see Heat Convection help).
 Variables  (For details, see Heat Convection help).

Connections

 Name Units Condition Description Modelica ID $\mathrm{solid}\left[i\right]$ - - i-th thermal port of the solid side solid[i] $\mathrm{fluid}\left[i\right]$ - - i-th thermal port of the fluid side fluid[i] $h\mathrm{in}$ $\frac{W}{{m}^{2}\cdot K}$ if Convection type is External input. Input signal of the heat transfer coefficient h_in $v$ $\frac{m}{s}$ if Convection type is Forced. Input signal of Wind speed for Forced convection v $\mathrm{cor}\left[i\right]$ - if use correction input is true. Input signal of the correction factor for ${Q}_{\mathrm{flow}}$ cor[i]

Parameters

 Symbol Default Units Description Modelica ID $\mathrm{Natural}$  Select Type of Convection  Natural : Natural convection  Forced : Force convection  Constant : Constant heat transfer coefficient  External input : Heat transfer coefficient given by input TypeOfMedium $\mathrm{false}$  If true, all parameters are defined by references. use_reference_natural $\mathrm{Vertical}\left(\mathrm{Ra}:10^4-10^13\right)$  Geometry type of Natural convection as references NaturalConvecType $\mathrm{false}$  If true, all parameters are defined by references. use_reference_forced  Geometry type of Natural convection as references ForcedConvecType $A$ $1.0$ ${m}^{2}$ Area of flow of each node A $X$ $1.0$ $m$ Streamwise length X $p$ $101325$ $\mathrm{Pa}$ Air pressure p $\mathrm{Nodes}$ $2$  Number of node numNode ${C}_{\mathrm{forced}}$  $0.664$  Gain parameter for Reynolds number in the generalized experimental equation of Forced convection generalized equation ${C}_{\mathrm{forced}}\cdot \left({\mathrm{Re}}^{{m}_{\mathrm{forced}}}-{\mathrm{offset}}_{\mathrm{forced}}\right)\cdot {\mathrm{Pr}}^{{n}_{\mathrm{forced}}}$ C_forced ${m}_{\mathrm{forced}}$ $\frac{1}{2}$  Exponent parameter for Reynolds number in the generalized experimental equation of Forced convection generalized equation m_forced ${\mathrm{offset}}_{\mathrm{forced}}$ $0$  Offset parameter for Reynolds number in the generalized experimental equation of Forced convection generalized equation offset_forced ${n}_{\mathrm{forced}}$ $\frac{1}{3}$  Exponent parameter for Prandtl number in the generalized experimental equation of Forced convection generalized equation n_forced ${C}_{\mathrm{lam}}$ $0.59$  Gain parameter for Reynolds number in the generalized experimental equation of Natural convection generalized equation when Fluid is laminar C_lam ${n}_{\mathrm{lam}}$ $\frac{1}{4}$  Exponent parameter for Reynolds number in the generalized experimental equation of Natural convection generalized equation when Fluid is laminar n_lam ${C}_{\mathrm{tur}}$ $0.1$  Gain parameter for Reynolds number in the generalized experimental equation of Natural convection generalized equation when Fluid is Turbulent C_tur ${n}_{\mathrm{tur}}$ $\frac{1}{3}$  Exponent parameter for Reynolds number in the generalized experimental equation of Natural convection generalized equation when Fluid is Turbulent n_tur $\mathrm{Threshold}$ ${10}^{9}$  Threshold value for Reynolds number to define Laminar or Turbulent TH $h$ $1$ $\frac{W}{{m}^{2}\cdot K}$ Constant heat transfer coefficient h $\mathrm{false}$  If true, input of correction for h is valid use_correction