Ring Shape B - MapleSim Help

Ring Shape B

Ring-shaped solid material, Type B

Description

The Ring Shape B component models a generic ideal thermal conductor with ring shape.

Ring Shape is divided into smaller Ring Sector nodes the total number of which is determined by $\mathrm{Nodes}$.

You can get the thermal information from each Ring Sector node.

The geometry of Ring Shape B is the following.

In the case of Ring Shape B has $\mathrm{Nodes}$=[4, 3], the image of the nodes and shape is the following.

The numbers of the nodes are determined by the order from front to back.

These numbers are only related to the $\mathrm{port_outer}\left[i\right]$, $\mathrm{port_inner}\left[i\right]$, and $\mathrm{port_center}\left[i\right]$.

 The node and port_front[i] numbers as viewed from front side The node and port_back[i] numbers as viewed from front side

If , Ring Shape is divided into equal central angle Ring Sectors.
If , you can input ratio of central angles of divided sectors as $\mathrm{Ratio__angle}$.
The following examples of $\mathrm{Ratio__angle}$ are completely the same.

Visualized Shape

 Equations (For details, see Ring Sector, Thermal Conductor  and Heat Capacitor help).

Variables

(For details, see Ring Sector, Thermal Conductor  and Heat Capacitor help).

 Symbol Units Description Modelica ID $T\left[i\right]$ $K$ Temperature of i-th Heat Capacitor T[]

Connections

 Name Description Modelica ID $\mathrm{port_outer}\left[i\right]$ i-th thermal port of outer The total number of i is determined by Nodes[1]*Nodes[2] port_outer[] $\mathrm{port_inner}\left[i\right]$ i-th thermal port of inner The total number of i is determined by Nodes[1]*Nodes[2] port_inner[] $\mathrm{port_front}\left[i\right]$ i-th thermal port of front The total number of i is determined by Nodes[1] port_front[] $\mathrm{port_back}\left[i\right]$ i- th thermal port of back The total number of i is determined by Nodes[1] port_back[] $\mathrm{port_center}\left[i\right]$ i-th thermal port of center The total number of i is determined by Nodes[1]*Nodes[2] port_center[]

Parameters

 Symbol Default Units Description Modelica ID $\mathrm{Material}$ $\mathrm{SolidPropertyData1}$ $-$ Solid material property data Material $\frac{W}{m\cdot K}$ Material.k is the thermal conductivity of the material Material.k $\frac{J}{\mathrm{kg}\cdot K}$ Material.cp is the specific heat capacity of the material Material.cp $\frac{\mathrm{kg}}{{m}^{3}}$ Material.rho is the density of the material Material.rho ${R}_{o}$ $1$ ${m}^{}$ Outer radius of the shape Ro $\mathrm{R__i}$ $0.5$ ${m}^{}$ Inner radius of the shape Ri $D$ $1$ ${m}^{}$ Depth of the shape D $\mathrm{Nodes}$ $\left[3,3\right]$ $-$ Number of nodes [1]:Number of sectors, [2]:Depth axis numNode[] $\mathrm{true}$ $-$ If true, divide a ring into equal central angle ring sectors. equal_div $\mathrm{Ratio__angle}$ $\left[1,1,1\right]$ $-$ If Equal division is false, you can input ratio of central angles of divided sectors. You need to match the number of elements with Nodes[1]. ratio_ang[] $\mathrm{T__start}$ $293.15$ $K$ Initial condition of temperature T_start $\mathrm{fixed}$ $\mathrm{true}$ $-$ True enforces the T_start initial condition fixed

Parameters for Visualization (Optional)

Note: If you enable Show Visualization option, you can visualize temperature change as colored geometry in 3-D Playback Window. To make this function available, you have to enable 3-D Animation option in Multibody Settings.
The quality of the visualization is affected if any open plot windows are behind the 3-D Playback Window. If you are experiencing playback issues, try moving the 3-D Playback Window so that it does not overlap a plot window. Alternatively, minimize or close any open plot windows.

(For more details about the relation between color and temperature, see Color Blend  help).

 Symbol Default Units Description Modelica ID $\mathrm{false}$ $-$ If true, you can visualize the temperature of heat capacitor of each node Shape as colored geometry in 3-D Playback Window. And the following visualization parameters are available. VisOn $\mathrm{Position}$ $\left[0,0,0\right]$ $m$ Position of the node in visualization [X, Y, Z]. pos[3] Rotation $\left[0,0,0\right]$ rad Rotation of the node in visualization [X, Y, Z]. rot[3] $\mathrm{Transparent}$ $\mathrm{false}$ $-$ If true, shape geometry will be transparent. transparent $\mathrm{T__max}$ $373.15$ $K$ Upper limit of temperature in the color blend. Tmax $\colorbox[rgb]{1,0,0}{{\mathrm{RGB}}}\left(\colorbox[rgb]{1,0,0}{{255}}\colorbox[rgb]{1,0,0}{{,}}\colorbox[rgb]{1,0,0}{{0}}\colorbox[rgb]{1,0,0}{{,}}\colorbox[rgb]{1,0,0}{{0}}\right)$ $-$ Color when temperature is over Temperature between $\mathrm{T__max}$ and $\mathrm{T__min}$ are automatically interpolated to a color. color_Tmax $\mathrm{T__min}$ $273.15$ $K$ Lower limit of temperature in the color blend. Tmin $\colorbox[rgb]{0,0,1}{{\mathrm{RGB}}}\left(\colorbox[rgb]{0,0,1}{{0}}\colorbox[rgb]{0,0,1}{{,}}\colorbox[rgb]{0,0,1}{{0}}\colorbox[rgb]{0,0,1}{{,}}\colorbox[rgb]{0,0,1}{{255}}\right)$ $-$ Color when temperature is under $\mathrm{T__min}$. Temperature between $\mathrm{T__max}$ and $\mathrm{T__min}$ are automatically interpolated to a color. color_Tmin $\mathrm{true}$ $-$ If true, heat capacitor sphere will be shown. showCapacitor $\mathrm{R__sphere}$ $0.2$ $m$ Radius of visualized heat capacitor sphere. Sradius $\mathrm{false}$ $-$ If true, each node geometry will be shown as a cylinder. This parameter is for compatibility with previous versions. showNode $\mathrm{false}$ $-$ If true, shape geometry will be shown. This parameter is for compatibility with previous versions. showGeom $\mathrm{Color_Geom}$ $\colorbox[rgb]{0,0,0}{{\mathrm{RGB}}}\left(\colorbox[rgb]{0,0,0}{{0}}\colorbox[rgb]{0,0,0}{{,}}\colorbox[rgb]{0,0,0}{{0}}\colorbox[rgb]{0,0,0}{{,}}\colorbox[rgb]{0,0,0}{{0}}\right)$ $-$ Color of transparent ring shape geometry. This parameter is for compatibility with previous versions. Note: This color is not changed by temperature. color_Geom