NiMH - MapleSim Help

# Online Help

###### All Products    Maple    MapleSim

MaplesoftBattery

EquivCircuit.NiMH $—$ Equivalent-circuit model of a nickel-metal hydride battery

Description

The EquivCircuit.NiMH component is an equivalent-circuit model of a nickel-metal hydride battery; see the following figure.

${R}_{0}=\mathrm{expoly}\left({R}_{\mathrm{out}},\mathrm{soc}\right)$

${R}_{1}=\mathrm{expoly}\left({R}_{\mathrm{tc1}},\mathrm{soc}\right)$

${R}_{2}=\mathrm{expoly}\left({R}_{\mathrm{tc2}},\mathrm{soc}\right)$

${R}_{1}{C}_{1}=\mathrm{expoly}\left({T}_{\mathrm{tc1}},\mathrm{soc}\right)$

${R}_{2}{C}_{2}=\mathrm{expoly}\left({T}_{\mathrm{tc2}},\mathrm{soc}\right)$

Thermal Effects

Select the thermal model of the battery from the heat model drop-down list.  The available models are: isothermal, external port, and convection.

 Isothermal The isothermal model sets the cell temperature to a constant parameter, ${T}_{\mathrm{iso}}$.
 External Port The external port model adds a thermal port to the battery model. The temperature of the heat port is the cell temperature. The parameters ${m}_{\mathrm{cell}}$ and ${c}_{p}$ become available and are used in the heat equation ${m}_{\mathrm{cell}}{c}_{p}\frac{\mathrm{d}{T}_{\mathrm{cell}}}{\mathrm{d}t}={P}_{\mathrm{cell}}-{Q}_{\mathrm{cell}}$ ${Q}_{\mathrm{flow}}={n}_{\mathrm{cell}}{Q}_{\mathrm{cell}}$ ${P}_{\mathrm{cell}}={i}_{\mathrm{cell}}{T}_{\mathrm{cell}}\left(\frac{\mathrm{d}{U}_{p}}{\mathrm{d}T}-\frac{\mathrm{d}{U}_{n}}{\mathrm{d}T}\right)+{i}_{\mathrm{cell}}\left({v}_{\mathrm{cell}}-{v}_{\mathrm{oc}}\right)$ where ${P}_{\mathrm{cell}}$ is the heat generated in each cell, including chemical reactions and ohmic resistive losses, ${Q}_{\mathrm{cell}}$ is the heat flow out of each cell, and ${Q}_{\mathrm{flow}}$ is the heat flow out of the external port.
 Convection The convection model assumes the heat dissipation from each cell is due to uniform convection from the surface to an ambient temperature. The parameters ${m}_{\mathrm{cell}}$, ${c}_{p}$, ${A}_{\mathrm{cell}}$, $h$, and ${T}_{\mathrm{amb}}$ become available, as does an output signal port that gives the cell temperature in Kelvin. The heat equation is the same as the heat equation for the external port, with ${Q}_{\mathrm{cell}}$ given by ${Q}_{\mathrm{cell}}=h{A}_{\mathrm{cell}}\left({T}_{\mathrm{cell}}-{T}_{\mathrm{amb}}\right)$
 Capacity The capacity of the battery can either be a fixed value, $\mathrm{CA}$, or be controlled via an input signal, ${C}_{\mathrm{in}}$, if the use capacity input box is checked.
 State of Charge A signal output, soc, gives the state-of-charge of the battery, with 0 being fully discharged and 1 being fully charged. The parameter ${\mathrm{SOC}}_{\mathrm{min}}$ sets the minimum allowable state-of-charge; if the battery is discharged past this level, the simulation is either terminated and an error message is raised, or, if the allow overdischarge parameter is true,  a warning is generated. A similar effect occurs if the battery is fully charged so that the state of charge reaches one; the simulation is terminated unless allow overcharge is true. The parameter ${\mathrm{SOC}}_{0}$ assigns the initial state-of charge of the battery.

Connections

 Name Type Description Modelica ID $p$ Electrical Positive pin p $n$ Electrical Negative pin n $\mathrm{soc}$ Real output State of charge [0..1] soc ${C}_{\mathrm{in}}$ Real input Sets capacity of cell, in ampere hours; available when use capacity input is true Cin

Variables

 Name Units Description Modelica ID ${T}_{\mathrm{cell}}$ $K$ Internal temperature of battery Tcell $i$ $A$ Current into battery i $v$ $V$ Voltage across battery v

Basic Parameters

 Name Default Units Description Modelica ID ${N}_{\mathrm{cell}}$ $1$ Number of cells, connected in series Ncell $\mathrm{CA}$ $1$ $\mathrm{A·h}$ Capacity of cell; available when use capacity input is false C ${\mathrm{SOC}}_{0}$ $1$ Initial state-of-charge [0..1] SOC0 ${\mathrm{SOC}}_{\mathrm{min}}$ $0.02$ Minimum allowable state-of-charge SOCmin ${N}_{\mathrm{cell}}$ $1$ Number of cells, connected in series Ncell ${R}_{\mathrm{cell}}$ $0.005$ $\mathrm{\Omega }$ Fixed cell resistance, if use cell resistance input is false Rcell allow overcharge false True allows simulation to continue with $1<\mathrm{SoC}$ allow_overcharge allow overdischarge false True allows simulation to continue with $\mathrm{SoC}<{\mathrm{SoC}}_{\mathrm{min}}$ allow_overdischarge

Basic Thermal Parameters

 Name Default Units Description Modelica ID ${T}_{\mathrm{iso}}$ $298.15$ $K$ Constant cell temperature; used with isothermal heat model Tiso ${c}_{p}$ $750$ $\frac{J}{\mathrm{kg}K}$ Specific heat capacity of cell cp ${m}_{\mathrm{cell}}$ $0.014$ $\mathrm{kg}$ Mass of one cell mcell $h$ $100$ $\frac{W}{{m}^{2}K}$ Surface coefficient of heat transfer; used with convection heat model h ${A}_{\mathrm{cell}}$ $0.0014$ ${m}^{2}$ Surface area of one cell; used with convection heat model Acell ${T}_{\mathrm{amb}}$ $298.15$ $K$ Ambient temperature; used with convection heat model Tamb

General Parameters

 Name Default Units Description Modelica ID dUkdT(p) $-1.55·{10}^{$\mathrm{power}}$ $\frac{V}{K}$ Temperature coefficient of potential of positive electrode dUpdT dUkdT(n) $-1.35·{10}^{$\mathrm{power}}$ $\frac{V}{K}$ Temperature coefficient of potential of negative electrode dUpdT ${R}_{\mathrm{out}}$ expoly array for series resistance Rout ${R}_{\mathrm{tc1}}$ expoly array for short time-constant resistance Rtc1 ${T}_{\mathrm{tc1}}$ expoly array for short time-constant duration Ttc1 ${R}_{\mathrm{tc2}}$ expoly array for long time-constant resistance Rtc2 ${T}_{\mathrm{tc2}}$ expoly array for long time-constant duration Ttc2

An exponential-polynomial (expoly) is a polynomial with an exponential term included. Its coefficients are given by a one-dimensional array, $k$, such that $ⅇxpoly\left(k,\mathrm{soc}\right)={k}_{1}ⅇxp\left({k}_{2}\mathrm{soc}\right)+{k}_{3}+{k}_{4}\mathrm{soc}+{k}_{5}{\mathrm{soc}}^{2}+\cdots$.

References

 [1] Chen, M. and Rincón-Mora, G.A., Accurate electrical battery model capable of predicting runtime and I-V performance, IEEE Transactions of Energy Conversion, Vol. 21, No. 2, 2006.

 See Also