Variance - MapleSim Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Variance

Calculates the empirical variance of its input signal

 Description The Variance component calculates the empirical variance of its input signal. The parameter ${t}_{\mathrm{\epsilon }}$ is used to guard against division by zero (the variance computation starts at ${t}_{0}+{t}_{\mathrm{\epsilon }}$ and before that time instant $y=0$). The variance of a signal is also equal to its mean power.
 Equations $y=\left\{\begin{array}{cc}\mathrm{max}\left(0,\mathrm{var}\right)& {t}_{0}+{t}_{\mathrm{\epsilon }}\le t\\ 0& \mathrm{otherwise}\end{array}$ $\frac{d\mathrm{\mu }}{\mathrm{dt}}=\phantom{\rule[-0.0ex]{0.5ex}{0.0ex}}\left\{\begin{array}{cc}\frac{u-\mathrm{\mu }}{t-{t}_{0}}& {t}_{0}+{t}_{\mathrm{\epsilon }}\le t\\ 0& \mathrm{otherwise}\end{array}$ $\frac{d\mathrm{var}}{\mathrm{dt}}=\left\{\begin{array}{cc}\frac{{\left(u-\mathrm{\mu }\right)}^{2}-\mathrm{var}}{t-{t}_{0}}& {t}_{0}+{t}_{\mathrm{\epsilon }}\le t\\ 0& \mathrm{otherwise}\end{array}$

Connections

 Name Description Modelica ID $u$ Noisy input signal u $y$ Variance of the input signal y

Parameters

 Name Default Units Description Modelica ID ${t}_{\mathrm{\epsilon }}$ $1·{10}^{-7}$ $s$ Variance calculation starts at ${t}_{0}+{t}_{\mathrm{\epsilon }}$ t_eps

 Modelica Standard Library The component described in this topic is from the Modelica Standard Library. To view the original documentation, which includes author and copyright information, click here.