Hollow Cylinder Axial Flux - MapleSim Help

Hollow Cylinder Axial Flux

Hollow cylinder permanent magnet with axial flux

 Description The Hollow Cylinder Axial Flux Permanent Magnet (or Hollow Cylinder Axial Flux) component models a hollow cylinder permanent magnet with length $l$, inner radius ${r}_{i}$, outer radius ${r}_{o}$, and sector angle $\mathrm{\theta }$. The flux flow is axial through the sector. The material parameter specifies the name of a record of class Hard Magnetic Material, which defines the magnetic material. A record of that class, with the corresponding name, must exist in the model, either at the same or higher level. Records of typical materials are in the palette Magnetic > Material > Hard. The Use default material boolean parameter, when true, sets the name of the material parameter to HardMaterial1, which corresponds to the default name assigned to a record of the appropriate class.  To use a different name, uncheck the box and enter the name in parameter that appears.
 Equations $A=\frac{1}{2}\mathrm{\theta }\left({r}_{o}^{2}-{r}_{i}^{2}\right)$ $\mathrm{\Phi }={\mathrm{\Phi }}_{p}=-{\mathrm{\Phi }}_{n}$ ${\mathrm{\Phi }}_{\mathrm{max}}={\mathrm{material.B}}_{r}A$ ${V}_{m}={V}_{{m}_{p}}-{V}_{{m}_{n}}={V}_{m,\mathrm{max}}\left(1+\frac{\mathrm{\Phi }}{{\mathrm{\Phi }}_{\mathrm{max}}}\right)$ ${V}_{m,\mathrm{max}}={\mathrm{material.H}}_{\mathrm{cB}}l$

Variables

 Name Units Description Modelica ID ${\mathrm{Vm}}_{\mathrm{max}}$ $A$ open-circuit magnetic potential Vm_max ${\mathrm{\Phi }}_{\mathrm{max}}$ $\mathrm{Wb}$ short-circuit magnetic flux Phi_max ${V}_{m}$ $A$ V_m $\mathrm{\Phi }$ $\mathrm{Wb}$ Phi

Connections

 Name Description Modelica ID ${\mathrm{port}}_{p}$ Positive magnetic port port_p ${\mathrm{port}}_{n}$ Negative magnetic port port_n

Parameters

 Name Default Units Description Modelica ID $\mathrm{material}$ Magnetic material material Use default material $\mathrm{true}$ True (checked) uses hardMaterial1 as the name for the material parameter useDefaultMaterial $l$ $0.01$ $m$ Length of prismatic shape l ${r}_{i}$ $0$ $m$ Inner radius of hollow cylinder r_i ${r}_{o}$ $0.01$ $m$ Outer radius of hollow cylinder r_o $\mathrm{\theta }$ $2\pi$ $\mathrm{rad}$ Angle of sector theta