JetCalculus[PushforwardTotalVector] - push forward a total vector field by a transformation
Calling Sequences
PushforwardTotalVector(φ)
Parameters
φ - a transformation between two jet spaces
Description
Examples
Let E→M and F→N be two fiber bundles with associated jet spaces JkE →M and JℓF →N and with jet coordinates (xi, uα, uiα, uijα, ..., uij ⋅⋅⋅ kα) and (ya, vρ, viρ, vij ρ, ..., vij ⋅⋅⋅ ℓρ) respectively. Let φ:JkE →JℓF be a transformation and let φa= φa(xi, uα, uiα, uijα, ..., uij ⋅⋅⋅ kα) be the ya components of φ . Then the total Jacobian of φ is the m ×n matrix Diφa, where Di denotes the total derivative with respect to xi. The push forward of the total vector field X = Xi Di on JkE is the total vector X = Ya Da, where Ya = DiφaXi.
The command PushforwardTotalVector is part of the DifferentialGeometry:-JetCalculus package. It can be used in the form PushforwardTotalVector(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-PushforwardTotalVector(...).
with⁡DifferentialGeometry:with⁡JetCalculus:
Example 1.
First initialize two different jet spaces over bundles E1→M1, E2→M2. The dimension of the base spaces are dimM1 =2, dimM2 =1.
DGsetup⁡x,y,u,E1,2:DGsetup⁡t,v,E2,2:DGsetup⁡p,q,r,w,E3,2:
Define a transformation φ:J2 E1 → E2 and compute its total Jacobian (a 1 × 2 matrix).
φ ≔ Transformation⁡E1,E2,t=u2,0,v[]=x⁢y
φ≔_DG⁡transformation,E1,2,E2,0,,00000000yx000000,u2,0,t,x⁢y,v,_DG⁡transformation,E1,2,E2,0,,00000000yx000000,u2,0,t,x⁢y,v,_DG⁡transformation,E1,2,E2,0,,00000000yx000000,u2,0,t,x⁢y,v,_DG⁡transformation,E1,2,E2,0,,00000000yx000000,u2,0,t,x⁢y,v
J1 ≔ TotalJacobian⁡φ
J1≔u0,1,2u0,2,2
Define a vector field on M1 and its total part on J4E1.
X ≔ a⁢D_x+b⁢D_y
X≔_DG⁡vector,E1,,1,1,_DG⁡vector,E1,,1,1,_DG⁡vector,E1,,1,1,_DG⁡vector,E1,,1,1⁢a+_DG⁡vector,E1,,2,1,_DG⁡vector,E1,,2,1,_DG⁡vector,E1,,2,1,_DG⁡vector,E1,,2,1⁢b
totX ≔ Prolong⁡TotalVector⁡X,3
totX≔_DG⁡vector,E1,total,3,1,a,2,b,3,u1⁢a+u2⁢b,4,a⁢u1,1+b⁢u1,2,5,a⁢u1,2+b⁢u2,2,6,a⁢u1,1,1+b⁢u1,1,2,7,a⁢u1,1,2+b⁢u1,2,2,8,a⁢u1,2,2+b⁢u2,2,2,9,a⁢u1,1,1,1+b⁢u1,1,1,2,10,a⁢u1,1,1,2+b⁢u1,1,2,2,11,a⁢u1,1,2,2+b⁢u1,2,2,2,12,a⁢u1,2,2,2+b⁢u2,2,2,2,_DG⁡vector,E1,total,3,1,a,2,b,3,u1⁢a+u2⁢b,4,a⁢u1,1+b⁢u1,2,5,a⁢u1,2+b⁢u2,2,6,a⁢u1,1,1+b⁢u1,1,2,7,a⁢u1,1,2+b⁢u1,2,2,8,a⁢u1,2,2+b⁢u2,2,2,9,a⁢u1,1,1,1+b⁢u1,1,1,2,10,a⁢u1,1,1,2+b⁢u1,1,2,2,11,a⁢u1,1,2,2+b⁢u1,2,2,2,12,a⁢u1,2,2,2+b⁢u2,2,2,2,_DG⁡vector,E1,total,3,1,a,2,b,3,u1⁢a+u2⁢b,4,a⁢u1,1+b⁢u1,2,5,a⁢u1,2+b⁢u2,2,6,a⁢u1,1,1+b⁢u1,1,2,7,a⁢u1,1,2+b⁢u1,2,2,8,a⁢u1,2,2+b⁢u2,2,2,9,a⁢u1,1,1,1+b⁢u1,1,1,2,10,a⁢u1,1,1,2+b⁢u1,1,2,2,11,a⁢u1,1,2,2+b⁢u1,2,2,2,12,a⁢u1,2,2,2+b⁢u2,2,2,2,_DG⁡vector,E1,total,3,1,a,2,b,3,u1⁢a+u2⁢b,4,a⁢u1,1+b⁢u1,2,5,a⁢u1,2+b⁢u2,2,6,a⁢u1,1,1+b⁢u1,1,2,7,a⁢u1,1,2+b⁢u1,2,2,8,a⁢u1,2,2+b⁢u2,2,2,9,a⁢u1,1,1,1+b⁢u1,1,1,2,10,a⁢u1,1,1,2+b⁢u1,1,2,2,11,a⁢u1,1,2,2+b⁢u1,2,2,2,12,a⁢u1,2,2,2+b⁢u2,2,2,2
Push forward totX to a vector field on J4E2
PushforwardTotalVector⁡φ,totX
_DG⁡vector,E2,total,3,1,u0,1,2⁢a+u0,2,2⁢b,2,v1⁢u0,1,2⁢a+u0,2,2⁢b,3,u0,1,2⁢a+u0,2,2⁢b⁢v1,1,4,u0,1,2⁢a+u0,2,2⁢b⁢v1,1,1,5,u0,1,2⁢a+u0,2,2⁢b⁢v1,1,1,1,_DG⁡vector,E2,total,3,1,u0,1,2⁢a+u0,2,2⁢b,2,v1⁢u0,1,2⁢a+u0,2,2⁢b,3,u0,1,2⁢a+u0,2,2⁢b⁢v1,1,4,u0,1,2⁢a+u0,2,2⁢b⁢v1,1,1,5,u0,1,2⁢a+u0,2,2⁢b⁢v1,1,1,1,_DG⁡vector,E2,total,3,1,u0,1,2⁢a+u0,2,2⁢b,2,v1⁢u0,1,2⁢a+u0,2,2⁢b,3,u0,1,2⁢a+u0,2,2⁢b⁢v1,1,4,u0,1,2⁢a+u0,2,2⁢b⁢v1,1,1,5,u0,1,2⁢a+u0,2,2⁢b⁢v1,1,1,1,_DG⁡vector,E2,total,3,1,u0,1,2⁢a+u0,2,2⁢b,2,v1⁢u0,1,2⁢a+u0,2,2⁢b,3,u0,1,2⁢a+u0,2,2⁢b⁢v1,1,4,u0,1,2⁢a+u0,2,2⁢b⁢v1,1,1,5,u0,1,2⁢a+u0,2,2⁢b⁢v1,1,1,1
See Also
DifferentialGeometry
JetCalculus
Prolong
TotalJacobian
Transformation
Download Help Document