TotalVector - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


JetCalculus[TotalVector] - form the total part of a vector field

Calling Sequences

     TotalVector(X)

Parameters

     X    - a vector field or a generalized vector field on a fiber bundle

 

Description

Examples

Description

• 

Let π:EM be a fiber bundle, with base dimension n and fiber dimension m and let πk:JkE  M  be the k-th jet bundle with jet coordinates (xi, uα, uiα, uijα, ..., uij  kα). A total vector field on jet space is a vector field Y of the form Y= AℓDℓ , where the coefficients Aℓ are functions on the jet space JkE and Dℓ is the total vector field for the coordinate xℓ , that is,

Dℓ = xℓ + uℓαuα + uiℓα uiα + uijℓα uijα  + 

Total vector fields may be characterized intrinsically as generalized vector fields which annihilate all contact 1-forms. If X = Aℓ    xℓ +Bα     uα is a generalized vector field on E, then the total part is

 Xtot = Aℓ x + uαuα and the evolutionary part is Xev = Bα Aℓuℓα    uα

The prolongation of Xtot is the total vector field pr(Xtot) = ADℓ.

• 

The command TotalVector is part of the DifferentialGeometry:-JetCalculus package.  It can be used in the form TotalVector(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-TotalVector(...).

Examples

withDifferentialGeometry:withJetCalculus:

 

Example 1.

Create the jet space J2E for the bundle with local coordinates x, y, u, v x, y. We calculate the total part of some vector fields.

DGsetupx,y,u,v,E,2:

 

Define a vector X1 and compute its total part.

E > 

X1evalDGD_x

X1:=D_x

(2.1)
E > 

totX1TotalVectorX1

totX1:=D_x+u1D_u[]+v1D_v[]

(2.2)

 

The prolongation of tot(X1) is the total derivativewith respect to x.

E > 

ProlongtotX1,2

D_x+u1D_u[]+v1D_v[]+u1,1D_u1+u1,2D_u2+v1,1D_v1+v1,2D_v2+u1,1,1D_u1,1+u1,1,2D_u1,2+u1,2,2D_u2,2+v1,1,1D_v1,1+v1,1,2D_v1,2+v1,2,2D_v2,2

(2.3)

 

Define a vector X2 and compute its total part.

E > 

X2evalDGD_u

X2:=D_u[]

(2.4)
E > 

TotalVectorX2

0D_x

(2.5)

 

Define a vector X3 and compute its total part.

E > 

X3evalDGaD_x+bD_y+cD_u+dD_v

X3:=aD_x+bD_y+cD_u[]+dD_v[]

(2.6)
E > 

totX3TotalVectorX3

totX3:=aD_x+bD_y+bu2+au1D_u[]+bv2+av1D_v[]

(2.7)

 

Example 2.

We show that the total part of a vector field annihilates the 1st order contact forms.

E > 

DGsetupx,y,z,u,v,w,J33,3:

J33 > 

X4w1,2,3D_z

X4:=w1,2,3D_z

(2.8)
J33 > 

totX4TotalVectorX4

totX4:=w1,2,3D_z+w1,2,3u3D_u[]+w1,2,3v3D_v[]+w1,2,3w3D_w[]

(2.9)

 

A total vector field always annihilates the first order contact 1-forms.

J33 > 

ω1convertCu,DGform;ω2convertCv,DGform;ω3convertCw,DGform

ω1:=u1dxu2dyu3dz+du[]

ω2:=v1dxv2dyv3dz+dv[]

ω3:=w1dxw2dyw3dz+dw[]

(2.10)
J33 > 

HooktotX4,ω1,HooktotX4,ω2,HooktotX4,ω3

0,0,0

(2.11)

 

A vector field is always the sum of its total and evolutionary parts.

J33 > 

evolX4EvolutionaryVectorX4

evolX4:=w1,2,3u3D_u[]w1,2,3v3D_v[]w1,2,3w3D_w[]

(2.12)
J33 > 

totX4&plusevolX4

w1,2,3D_z

(2.13)

See Also

DifferentialGeometry

JetCalculus

EvolutionaryVector

Hook

Prolong