SylowSubgroup - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


GroupTheory

  

SylowSubgroup

  

construct a Sylow subgroup of a group

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

SylowSubgroup( p, G )

Parameters

p

-

a positive rational prime

G

-

a permutation group or Cayley table group

Description

• 

Let G be a finite group, and let p be a positive (rational) prime.  A Sylow p-subgroup of G is a maximal p-subgroup of G where, by a p-subgroup, we mean a subgroup whose order is a power of p. The Sylow theorems assert that, for a prime divisor p of the order of a finite group G, there is a Sylow p-subgroup of G and that all Sylow p-subgroups of G are conjugate in G.  Moreover, the number of Sylow p-subgroups of G is congruent to 1 modulo p.

• 

The SylowSubgroup( p, G ) command constructs a Sylow p-subgroup of a group G. The group G must be an instance of a permutation group or a Cayley table group.

• 

Note that, if p is not a divisor of the order of G, then the trivial subgroup of G is returned.

Examples

withGroupTheory:

GSL2,5:

ifactorGroupOrderG

2335

(1)

P2SylowSubgroup2,G

P21,2,3,45,20,15,106,22,18,147,23,19,118,24,16,129,21,17,13,1,5,3,152,10,4,206,8,18,167,13,19,219,23,17,1112,14,24,22

(2)

GroupOrderP2

8

(3)

GroupOrderSylowSubgroup3,G

3

(4)

GroupOrderSylowSubgroup5,G

5

(5)

GroupOrderSylowSubgroup7,G

1

(6)

GCayleyTableGroupSymm4

G < a Cayley table group with 24 elements >

(7)

PSylowSubgroup3&comma;G

P < a Cayley table group with 3 elements >

(8)

NNormaliserP&comma;G

NN < a Cayley table group with 24 elements > < a Cayley table group with 3 elements >

(9)

QSylowSubgroup2&comma;N

Q < a Cayley table group with 2 elements >

(10)

GroupOrderQ

2

(11)

Compatibility

• 

The GroupTheory[SylowSubgroup] command was introduced in Maple 17.

• 

For more information on Maple 17 changes, see Updates in Maple 17.

See Also

GroupTheory

GroupTheory[AlternatingGroup]