GenerateSpatialData - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Interpolation[Kriging]

  

GenerateSpatialData

  

generate a spatially correlated data set

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

GenerateSpatialData(variogram)

GenerateSpatialData(variogram,n,options)

Parameters

variogram

-

a supported variogram model

n

-

(optional) the (approximate) number of points generated. The default value is 30.

options

-

(optional) keyword option of the form grid=truefalse or dimension=d. If grid is set to true, the generated data points will be equally spaced along each dimension (default: false). The dimension option sets the dimension of the points to be generated (default: 2).

Description

• 

The GenerateSpatialData command takes a variogram and generates a set of points and associated data reflective of that variogram model. These points and data can then be used to experiment with, or demonstrate, Kriging interpolation.

• 

If the grid=true option is given, then the points are located in a square d-dimensional grid, at coordinates equally spaced between 0 and 1. As a consequence, there will be kd points in total, for some k. Maple chooses k as n1d; consequently, the number of points generated may be smaller than n. For example, if d has its default value of 2, then the number of points will be reduced to the largest perfect square that is not greater than n.

• 

If the grid=true option is not given, then the points are uniformly randomly selected from the d-dimensional unit cube. In this case, exactly n points are generated.

• 

The data set is returned as an expression sequence of a list of lists representing the points, and a Vector of values at those points.

Examples

We generate some points in two dimensions and associated data.

points1,data1Interpolation:-Kriging:-GenerateSpatialDataSpherical1,10,1

These can be used to demonstrate Kriging interpolation.

k1Interpolation:-Krigingpoints1,data1

k1Krⅈgⅈng ⅈntⅇrpolatⅈon obȷⅇct wⅈth 30 samplⅇ poⅈntsVarⅈogram: Sphⅇrⅈcal(1.25259453854486,13.6487615617241,.5525536774)

(1)

SetVariogramk1,Spherical1,10,1

Krⅈgⅈng ⅈntⅇrpolatⅈon obȷⅇct wⅈth 30 samplⅇ poⅈntsVarⅈogram: Sphⅇrⅈcal(1,10,1)

(2)

ComputeGridk1,0..1,0..1,0.1,output=plot

We now generate some points in a three-dimensional grid and associated data.

points2,data2Interpolation:-Kriging:-GenerateSpatialDataRationalQuadratic0.1,10,4,216,dimension=3,grid=true

k2Interpolation:-Krigingpoints2,data2

k2Krⅈgⅈng ⅈntⅇrpolatⅈon obȷⅇct wⅈth 216 samplⅇ poⅈntsVarⅈogram: Sphⅇrⅈcal(1.57713557301257,22.6431969077444,.8)

(3)

SetVariogramk2,RationalQuadratic0.1,10,4

Krⅈgⅈng ⅈntⅇrpolatⅈon obȷⅇct wⅈth 216 samplⅇ poⅈntsVarⅈogram: RatⅈonalQuaⅆratⅈc(.1,10,4)

(4)

plots:-implicitplot3dk2x,y,z=Statistics:-Mediandata2,x=0..1,y=0..1,z=0..1,grid=8,8,8

Compatibility

• 

The Interpolation[Kriging][GenerateSpatialData] command was introduced in Maple 2018.

• 

For more information on Maple 2018 changes, see Updates in Maple 2018.

See Also

ComputeGrid

Kriging

SetVariogram