AdjointMatrix
calculate the adjoint representation of a LAVF object.
Calling Sequence
Parameters
Description
Examples
Compatibility
AdjointMatrix( L, output = out)
AdjointMatrix( L, M, output = out)
AdjointMatrix( L, M, N, output = out)
L, M, N
-
a LAVF object of finite type (see IsFiniteType for more detail)
out
(optional) a string: either "matrix" or "basis"
In the first calling sequence, AdjointMatrix(L) returns the adjoint representation matrix of L.
For AdjointMatrix(L) to make sense, the LAVF object L must be a Lie algebra (i.e. IsLieAlgebra(L) returns true. See IsLieAlgebra for more detail).
In the second calling sequence, AdjointMatrix(L,M) returns a matrix representation of the Lie algebra L on the invariant subspace M. (i.e IsInvariant(M,L) returns true. See IsInvariant for more detail).
The third calling sequence is the general form of the method. AdjointMatrix(L,M,N) returns a matrix representing the action of L on M in N.
For AdjointMatrix(L, M, N) to make sense, L must commute with M modulo N (i.e. AreCommuting(L,M,N) returns true. See AreCommuting for more detail).
By specifying output = "basis", the output will be returned in terms of basis.
This method is associated with the LAVF object. For more detail, see Overview of the LAVF object.
withLieAlgebrasOfVectorFields:
Typesetting:-Settingsuserep=true:
Typesetting:-Suppressξx,y,ηx,y:
V≔VectorFieldξx,yDx+ηx,yDy,space=x,y
V≔ξⅆⅆx+ηⅆⅆy
E2≔LHPDEdiffξx,y,y,y=0,diffηx,y,x=−diffξx,y,y,diffηx,y,y=0,diffξx,y,x=0,indep=x,y,dep=ξ,η
E2≔ξy,y=0,ηx=−ξy,ηy=0,ξx=0,indep=x,y,dep=ξ,η
Construct a LAVF for theEuclidean Lie algebra E(2).
L≔LAVFV,E2
L≔ξⅆⅆx+ηⅆⅆy&whereξy,y=0,ξx=0,ηx=−ξy,ηy=0
IsLieAlgebraL
true
AdjointMatrixL
0ξy−ξ−ξy0η000
AdjointMatrixL,output=basis
010−100000,000001000,00−1000000
The AdjointMatrix command was introduced in Maple 2020.
For more information on Maple 2020 changes, see Updates in Maple 2020.
See Also
LieAlgebrasOfVectorFields (Package overview)
LAVF (Object overview)
LieAlgebrasOfVectorFields[VectorField]
LieAlgebrasOfVectorFields[LHPDE]
LieAlgebrasOfVectorFields[LAVF]
IsLieAlgebra
AreCommuting
IsFiniteType
Download Help Document