Get - Maple Help

MathematicalFunctions

 Get
 return information on a mathematical function

 Calling Sequence Get(topic, math_function, all)

Parameters

 topic - name; specifies the topic for information math_function - name; mathematical function all - (optional) literal name; can be used with only calling_sequence topic to return all known calling sequences

Description

 • The Get(topic, math_function) function returns the topic information on the function math_function. If the requested information is not available it returns NULL.
 • The topic argument must be one of:

 • The Get(topic, math_function) function is equivalent to FunctionAdvisor(topic, math_function), but does not attempt to match misspelled topic or math_function arguments to the correct names. For more information, see FunctionAdvisor.

Examples

 > $\mathrm{with}\left(\mathrm{MathematicalFunctions}\right)$
 $\left[{\mathrm{&Intersect}}{,}{\mathrm{&Minus}}{,}{\mathrm{&Union}}{,}{\mathrm{Assume}}{,}{\mathrm{Coulditbe}}{,}{\mathrm{Evalf}}{,}{\mathrm{Get}}{,}{\mathrm{Is}}{,}{\mathrm{SearchFunction}}{,}{\mathrm{Sequences}}{,}{\mathrm{Series}}\right]$ (1)
 > $\mathrm{Get}\left(\mathrm{series},\mathrm{arcsin}\right)$
 ${\mathrm{series}}{}\left({\mathrm{arcsin}}{}\left({z}\right){,}{z}{,}{4}\right){=}{z}{+}\frac{{1}}{{6}}{}{{z}}^{{3}}{+}{O}{}\left({{z}}^{{5}}\right)$ (2)
 > $\mathrm{Get}\left(\mathrm{sum_form},\mathrm{tan}\right)$
 $\left[{\mathrm{tan}}{}\left({z}\right){=}{\sum }_{{\mathrm{_k1}}{=}{1}}^{{\mathrm{\infty }}}{}\frac{{\mathrm{bernoulli}}{}\left({2}{}{\mathrm{_k1}}\right){}{\left({-1}\right)}^{{\mathrm{_k1}}}{}{{z}}^{{-}{1}{+}{2}{}{\mathrm{_k1}}}{}\left({{4}}^{{\mathrm{_k1}}}{-}{{16}}^{{\mathrm{_k1}}}\right)}{{\mathrm{\Gamma }}{}\left({2}{}{\mathrm{_k1}}{+}{1}\right)}{,}{\wedge }{}\left(\left|{z}\right|{<}\frac{{\mathrm{\pi }}}{{2}}\right)\right]$ (3)
 > $\mathrm{Get}\left(\mathrm{special_values},\mathrm{sec}\right)$
 $\left[{\mathrm{sec}}{}\left(\frac{{\mathrm{\pi }}}{{6}}\right){=}\frac{{2}{}\sqrt{{3}}}{{3}}{,}{\mathrm{sec}}{}\left(\frac{{\mathrm{\pi }}}{{4}}\right){=}\sqrt{{2}}{,}{\mathrm{sec}}{}\left(\frac{{\mathrm{\pi }}}{{3}}\right){=}{2}{,}{\mathrm{sec}}{}\left({\mathrm{\infty }}\right){=}{\mathrm{undefined}}{,}{\mathrm{sec}}{}\left({\mathrm{\infty }}{}{I}\right){=}{0}{,}\left[{\mathrm{sec}}{}\left({\mathrm{\pi }}{}{n}\right){=}{-1}{,}{\wedge }{}\left({n}{::}{\mathrm{odd}}\right)\right]{,}\left[{\mathrm{sec}}{}\left({\mathrm{\pi }}{}{n}\right){=}{1}{,}{\wedge }{}\left({n}{::}{\mathrm{even}}\right)\right]{,}\left[{\mathrm{sec}}{}\left(\frac{{\mathrm{\pi }}{}{n}}{{2}}\right){=}{\mathrm{\infty }}{+}{\mathrm{\infty }}{}{I}{,}{\wedge }{}\left({n}{::}{\mathrm{odd}}\right)\right]\right]$ (4)
 > $\mathrm{Get}\left(\mathrm{branch_cuts},\mathrm{arccot}\right)$
 $\left[{\mathrm{arccot}}{}\left({z}\right){,}{z}{\in }{\mathrm{ComplexRange}}{}\left({-}{\mathrm{\infty }}{}{I}{,}{-I}\right){\vee }{z}{\in }{\mathrm{ComplexRange}}{}\left({I}{,}{\mathrm{\infty }}{}{I}\right)\right]$ (5)
 > $\mathrm{Get}\left(\mathrm{identities},\mathrm{BesselK}\right)$
 $\left[\left[{\mathrm{BesselK}}{}\left({a}{,}{I}{}{z}\right){=}{-}\frac{{\mathrm{\pi }}{}{\mathrm{BesselY}}{}\left({a}{,}{z}\right)}{{2}{}{{I}}^{{a}}}{+}\frac{{\mathrm{BesselJ}}{}\left({a}{,}{z}\right){}\left({\mathrm{ln}}{}\left({z}\right){-}{\mathrm{ln}}{}\left({I}{}{z}\right)\right)}{{{I}}^{{a}}}{,}{\wedge }{}\left({a}{::}{ℤ}\right)\right]{,}\left[{\mathrm{BesselK}}{}\left({a}{,}{I}{}{z}\right){=}{-}\frac{{\mathrm{\pi }}{}{{z}}^{{a}}{}{\mathrm{BesselY}}{}\left({a}{,}{z}\right)}{{2}{}{\left({I}{}{z}\right)}^{{a}}}{+}\frac{{\mathrm{\pi }}{}{\mathrm{BesselJ}}{}\left({a}{,}{z}\right){}\left({-}\frac{{\left({I}{}{z}\right)}^{{a}}}{{{z}}^{{a}}}{+}\frac{{{z}}^{{a}}{}{\mathrm{cos}}{}\left({a}{}{\mathrm{\pi }}\right)}{{\left({I}{}{z}\right)}^{{a}}}\right){}{\mathrm{csc}}{}\left({a}{}{\mathrm{\pi }}\right)}{{2}}{,}{\wedge }{}\left({a}{::}\left({¬}{ℤ}\right)\right)\right]{,}\left[{\mathrm{BesselK}}{}\left({a}{,}{-}{z}\right){=}{\left({-1}\right)}^{{a}}{}{\mathrm{BesselK}}{}\left({a}{,}{z}\right){+}{\mathrm{BesselI}}{}\left({a}{,}{z}\right){}\left({\mathrm{ln}}{}\left({z}\right){-}{\mathrm{ln}}{}\left({-}{z}\right)\right){,}{\wedge }{}\left({a}{::}{ℤ}\right)\right]{,}\left[{\mathrm{BesselK}}{}\left({a}{,}{-}{z}\right){=}\frac{{{z}}^{{a}}{}{\mathrm{BesselK}}{}\left({a}{,}{z}\right)}{{\left({-}{z}\right)}^{{a}}}{+}\frac{{\mathrm{\pi }}{}\left(\frac{{{z}}^{{a}}}{{\left({-}{z}\right)}^{{a}}}{-}\frac{{\left({-}{z}\right)}^{{a}}}{{{z}}^{{a}}}\right){}{\mathrm{BesselI}}{}\left({a}{,}{z}\right){}{\mathrm{csc}}{}\left({a}{}{\mathrm{\pi }}\right)}{{2}}{,}{\wedge }{}\left({a}{::}\left({¬}{ℤ}\right)\right)\right]{,}\left[{\mathrm{BesselK}}{}\left({a}{,}{b}{}{\left({c}{}{{z}}^{{q}}\right)}^{{p}}\right){=}\frac{{\left({b}{}{{c}}^{{p}}{}{{z}}^{{p}{}{q}}\right)}^{{a}}{}{\mathrm{BesselK}}{}\left({a}{,}{b}{}{{c}}^{{p}}{}{{z}}^{{p}{}{q}}\right)}{{\left({b}{}{\left({c}{}{{z}}^{{q}}\right)}^{{p}}\right)}^{{a}}}{-}\frac{{\mathrm{\pi }}{}{\mathrm{csc}}{}\left({a}{}{\mathrm{\pi }}\right){}{\mathrm{BesselI}}{}\left({a}{,}{b}{}{{c}}^{{p}}{}{{z}}^{{p}{}{q}}\right){}\left(\frac{{\left({b}{}{\left({c}{}{{z}}^{{q}}\right)}^{{p}}\right)}^{{a}}}{{\left({b}{}{{c}}^{{p}}{}{{z}}^{{p}{}{q}}\right)}^{{a}}}{-}\frac{{\left({b}{}{{c}}^{{p}}{}{{z}}^{{p}{}{q}}\right)}^{{a}}}{{\left({b}{}{\left({c}{}{{z}}^{{q}}\right)}^{{p}}\right)}^{{a}}}\right)}{{2}}{,}{a}{::}\left({¬}{ℤ}\right){\wedge }\left({2}{}{p}\right){::}{ℤ}\right]{,}\left[{\mathrm{BesselK}}{}\left({a}{,}{b}{}{\left({c}{}{{z}}^{{q}}\right)}^{{p}}\right){=}{\left(\frac{{\left({c}{}{{z}}^{{q}}\right)}^{{p}}}{{{c}}^{{p}}{}{{z}}^{{p}{}{q}}}\right)}^{{a}}{}\left({\mathrm{BesselK}}{}\left({a}{,}{b}{}{{c}}^{{p}}{}{{z}}^{{p}{}{q}}\right){-}{\left({-1}\right)}^{{a}}{}{\mathrm{BesselI}}{}\left({a}{,}{b}{}{{c}}^{{p}}{}{{z}}^{{p}{}{q}}\right){}\left({\mathrm{ln}}{}\left({b}{}{\left({c}{}{{z}}^{{q}}\right)}^{{p}}\right){-}{\mathrm{ln}}{}\left({b}{}{{c}}^{{p}}{}{{z}}^{{p}{}{q}}\right)\right)\right){,}{a}{::}{ℤ}{\wedge }\left({2}{}{p}\right){::}{ℤ}\right]{,}{\mathrm{BesselK}}{}\left({a}{,}{z}\right){=}\frac{{2}{}\left({a}{-}{1}\right){}{\mathrm{BesselK}}{}\left({a}{-}{1}{,}{z}\right)}{{z}}{+}{\mathrm{BesselK}}{}\left({a}{-}{2}{,}{z}\right){,}{\mathrm{BesselK}}{}\left({a}{,}{z}\right){=}{-}\frac{{2}{}\left({a}{+}{1}\right){}{\mathrm{BesselK}}{}\left({a}{+}{1}{,}{z}\right)}{{z}}{+}{\mathrm{BesselK}}{}\left({a}{+}{2}{,}{z}\right)\right]$ (6)
 > $\mathrm{Get}\left(\mathrm{calling_sequence},\mathrm{Ζ},\mathrm{all}\right)$
 ${\mathrm{\zeta }}{}\left({s}\right){,}{{\mathrm{\zeta }}}^{\left({n}\right)}{}\left({s}\right){,}{{\mathrm{\zeta }}}^{\left({n}\right)}{}\left({s}{,}{a}\right)$ (7)
 > $\mathrm{Get}\left(\mathrm{definition},\mathrm{JacobiAM}\right)$
 $\left[{z}{=}{\mathrm{JacobiAM}}{}\left({{\int }}_{{0}}^{{z}}\frac{{1}}{\sqrt{{1}{-}{{k}}^{{2}}{}{{\mathrm{sin}}{}\left({\mathrm{\theta }}\right)}^{{2}}}}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{ⅆ}{\mathrm{\theta }}{,}{k}\right){,}{z}{::}\left[{-}\frac{{3}}{{2}}{,}\frac{{3}}{{2}}\right]\right]$ (8)
 > $\mathrm{Get}\left(\mathrm{definition},\mathrm{InverseJacobiAM}\right)$
 $\left[{\mathrm{InverseJacobiAM}}{}\left({\mathrm{\phi }}{,}{k}\right){=}{{\int }}_{{0}}^{{\mathrm{\phi }}}\frac{{1}}{\sqrt{{1}{-}{{k}}^{{2}}{}{{\mathrm{sin}}{}\left({\mathrm{_θ1}}\right)}^{{2}}}}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{ⅆ}{\mathrm{_θ1}}{,}{\mathrm{with no restrictions on}}{}\left({\mathrm{\phi }}{,}{k}\right)\right]$ (9)