PartiallyOrderedSets/IsChain - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : PartiallyOrderedSets/IsChain

PartiallyOrderedSets

  

IsChain

  

checks whether a subset of the underlying set of a poset is a chain of that poset

 

Calling Sequence

Parameters

Description

Examples

References

Compatibility

Calling Sequence

IsChain(P, L)

Parameters

P

-

PartiallyOrderedSet

L

-

list of elements belonging to PartiallyOrderedSet P

Description

• 

The command IsChain(P, L) checks whether the elements in L represent a chain in the partially ordered set P.

Remarks

• 

IsChain will generate and store the transitive closure of P.

Terminology

• 

A partially ordered set, or poset for short, is a pair (P, <=) where P is a set and <= is a partial order on P.

• 

From now on, we fix a poset (P, <=). Two elements a and b of P are said comparable if either a <= b or  b <= a holds, otherwise a and b are said incomparable.

• 

A subset C of P is called a chain if any two elements of C are comparable. A chain C of P is said maximal if P does not admit another chain D of which C would be a proper subset.

• 

A subset C of P is called an antichain if any two distinct elements of C are incomparable. An antichain C of P is said maximal if P does not admit another antichain D of which C would be a proper subset. We note that any singleton of P is both a chain and an antichain.

Examples

withPartiallyOrderedSets&colon;

T3&comma;4&comma;5&comma;6&comma;7&comma;8&comma;9&colon;

Create a poset from a set and a non-strict partial order

V&colon;leq`<=`&colon;empty_posetPartiallyOrderedSetV&comma;leq

empty_poset< a poset with 0 elements >

(1)

Check whether a subset of the underlying set is a chain

IsChainempty_poset&comma;0

true

(2)

Create a poset from a set and a non-strict partial order

S1&comma;2&comma;3&comma;4&comma;5&colon;poset1PartiallyOrderedSetS&comma;leq

poset1< a poset with 5 elements >

(3)

Display this poset

DrawGraphposet1

Check whether a subset (passed as a list) of the underlying set is a chain

IsChainposet1&comma;1&comma;3&comma;5

true

(4)

Check whether a subset (passed as a list) of the underlying set is a chain

IsChainposet1&comma;3

true

(5)

Create a poset from a set and an adjacency list of a partial order regarded as a directed graph

adjList5map2map&comma;`+`&comma;Array1&comma;4&comma;7&comma;2&comma;6&comma;3&comma;4&comma;5&comma;6&comma;7&comma;2

adjList53&comma;6&comma;94&comma;856789

(6)

poset5PartiallyOrderedSetconvertT&comma;list&comma;adjList5

poset5< a poset with 7 elements >

(7)

Display this poset

DrawGraphposet5

Check whether a subset of the underlying set is a chain

IsChainposet5&comma;5&comma;3&comma;7

false

(8)

Check whether a subset of the underlying set is a chain

IsChainposet5&comma;4&comma;8

true

(9)

References

  

Richard P. Stanley: Enumerative Combinatorics 1. 1997, Cambridge Studies in Advanced Mathematics. Vol. 49. Cambridge University Press.

Compatibility

• 

The PartiallyOrderedSets[IsChain] command was introduced in Maple 2025.

• 

For more information on Maple 2025 changes, see Updates in Maple 2025.

See Also

PartiallyOrderedSets[Height]

PartiallyOrderedSets[IsAntichain]

PartiallyOrderedSets[LessEqual]

PartiallyOrderedSets[MaximalAntichains]

PartiallyOrderedSets[MaximalChains]

PartiallyOrderedSets[PartiallyOrderedSet]

PartiallyOrderedSets[Width]