PartiallyOrderedSets/LeastElement - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : PartiallyOrderedSets/LeastElement

PartiallyOrderedSets

  

LeastElement

  

returns, if it exists, the least element of a poset

 

Calling Sequence

Parameters

Description

Examples

References

Compatibility

Calling Sequence

LeastElement(P)

LeastElement(P,opts)

Parameters

P

-

PartiallyOrderedSet

opts

-

(optional) option of the form noleastelement = s, where s is a non-integer expression

Description

• 

The command LeastElement(P) returns the least element of the partially ordered set P, if this element exists, otherwise NULL is returned.

• 

If noleastelement = s is passed as an optional argument, and if P does not have a greatest element, then s is returned

Remarks

• 

LeastElement will generate and store the transitive closure of P.

Terminology

• 

A partially ordered set, or poset for short, is a pair (P, <=) where P is a set and <= is a partial order on P.

• 

From now on, we fix a poset (P, <=).

• 

Let S be a subset of P and a be an element of S. We say that a is a greatest element (resp. least element) of S if for every element b  of S we have b  <= a (resp. a <= b). Observe that if S has a greatest element (resp. least element) then it is unique.

Examples

withPartiallyOrderedSets&colon;

Create a poset from a set and a non-strict partial order

V&colon;leq`<=`&colon;empty_posetPartiallyOrderedSetV&comma;leq

empty_poset< a poset with 0 elements >

(1)

Compute, if it exsist, the least element

LeastElementempty_poset

Compute, if it exsist, the least element and specifiy the resulting mesage, if not

LeastElementempty_poset&comma;noleastelement=no least element found

no least element found

(2)

Create a poset from a set and a non-strict partial order

divisibilityx&comma;yiremy&comma;x=0&colon;T3&comma;4&comma;5&comma;6&comma;7&comma;8&comma;9&colon;

poset2PartiallyOrderedSetT&comma;divisibility

poset2< a poset with 7 elements >

(3)

Display this poset

DrawGraphposet2

Compute, if it exsist, the least element

LeastElementposet2

Compute, if it exsist, the least element and specifiy the resulting mesage, if not

LeastElementposet2&comma;noleastelement=no least element found

no least element found

(4)

Create a poset from a set and a non-strict partial order

Z1&comma;2&comma;3&comma;4&comma;5&comma;6&comma;10&comma;12&comma;15&comma;20&comma;30&comma;60

Z1&comma;2&comma;3&comma;4&comma;5&comma;6&comma;10&comma;12&comma;15&comma;20&comma;30&comma;60

(5)

poset10PartiallyOrderedSetZ&comma;divisibility

poset10< a poset with 12 elements >

(6)

Display this poset

DrawGraphposet10

Compute, if it exsist, the least element

LeastElementposet10

1

(7)

References

  

Richard P. Stanley: Enumerative Combinatorics 1. 1997, Cambridge Studies in Advanced Mathematics. Vol. 49. Cambridge University Press.

Compatibility

• 

The PartiallyOrderedSets[LeastElement] command was introduced in Maple 2025.

• 

For more information on Maple 2025 changes, see Updates in Maple 2025.

See Also

PartiallyOrderedSets[GreatestElement]

PartiallyOrderedSets[GreatestLowerBound]

PartiallyOrderedSets[LeastUpperBound]

PartiallyOrderedSets[MaximalElements]

PartiallyOrderedSets[MinimalElements]

PartiallyOrderedSets[PartiallyOrderedSet]