PartiallyOrderedSets/NumberOfElements - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : PartiallyOrderedSets/NumberOfElements

PartiallyOrderedSets

  

NumberOfElements

  

returns the cardinality of the underlying set of a poset

 

Calling Sequence

Parameters

Description

Examples

References

Compatibility

Calling Sequence

NumberOfElements(P)

Parameters

P

-

PartiallyOrderedSet

Description

• 

The command NumberOfElements(P) returns the number of elements of the partially ordered set P.

Terminology

• 

A partially ordered set, or poset for short, is a pair (P, <=) where P is a set and <= is a partial order on P. The number of elements of (P, <=) is simply the cardinality of  P.

Examples

withPartiallyOrderedSets&colon;

divisibilityx&comma;yiremy&comma;x=0

divisibilityx&comma;yiremy&comma;x=0

(1)

Create a poset from a set and a non-strict partial order

V&colon;leq`<=`&colon;empty_posetPartiallyOrderedSetV&comma;leq

empty_poset< a poset with 0 elements >

(2)

Compute the number of its elements

NumberOfElementsempty_poset

0

(3)

Create a poset from a set and a non-strict partial order

S1&comma;2&comma;3&comma;4&comma;5&colon;poset1PartiallyOrderedSetS&comma;leq

poset1< a poset with 5 elements >

(4)

Display this poset

DrawGraphposet1

Compute the number of its elements

NumberOfElementsposet1

5

(5)

Create a poset from a set and a non-strict partial order

Z1&comma;2&comma;3&comma;4&comma;5&comma;6&comma;10&comma;12&comma;15&comma;20&comma;30&comma;60

Z1&comma;2&comma;3&comma;4&comma;5&comma;6&comma;10&comma;12&comma;15&comma;20&comma;30&comma;60

(6)

poset10PartiallyOrderedSetZ&comma;divisibility

poset10< a poset with 12 elements >

(7)

Display this poset

DrawGraphposet10

Compute the number of its elements

NumberOfElementsposet10

12

(8)

References

  

Richard P. Stanley: Enumerative Combinatorics 1. 1997, Cambridge Studies in Advanced Mathematics. Vol. 49. Cambridge University Press.

Compatibility

• 

The PartiallyOrderedSets[NumberOfElements] command was introduced in Maple 2025.

• 

For more information on Maple 2025 changes, see Updates in Maple 2025.

See Also

PartiallyOrderedSets[AdjacencyList]

PartiallyOrderedSets[AreEqual]

PartiallyOrderedSets[AreIsomorphic]

PartiallyOrderedSets[ConnectedComponents]

PartiallyOrderedSets[DrawGraph]

PartiallyOrderedSets[GreatestElement]

PartiallyOrderedSets[GreatestLowerBound]

PartiallyOrderedSets[Height]

PartiallyOrderedSets[IsAntichain]

PartiallyOrderedSets[IsChain]

PartiallyOrderedSets[IsFaceLattice]

PartiallyOrderedSets[IsGraded]

PartiallyOrderedSets[IsLattice]

PartiallyOrderedSets[IsRanked]

PartiallyOrderedSets[LeastElement]

PartiallyOrderedSets[LeastUpperBound]

PartiallyOrderedSets[LessEqual]

PartiallyOrderedSets[MaximalAntichains]

PartiallyOrderedSets[MaximalChains]

PartiallyOrderedSets[MaximalElements]

PartiallyOrderedSets[MinimalElements]

PartiallyOrderedSets[NumberOfElements]

PartiallyOrderedSets[PartiallyOrderedSet]

PartiallyOrderedSets[Rank]

PartiallyOrderedSets[ToGraph]

PartiallyOrderedSets[TransitiveClosure]

PartiallyOrderedSets[TransitiveReduction]

PartiallyOrderedSets[Width]