Logistic - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Statistics[Distributions]

  

Logistic

  

logistic distribution

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

Logistic(a, b)

LogisticDistribution(a, b)

Parameters

a

-

location parameter

b

-

scale parameter

Description

• 

The logistic distribution is a continuous probability distribution with probability density function given by:

ft=ⅇtabb1+ⅇtab2

  

subject to the following conditions:

a::real,0<b

• 

The logistic variate Logistic(a,b) is related to the standardized variate Logistic(0,1) by Logistic(0,1) ~ (Logistic(a,b)-a)/b.

• 

The standard logistic variate is related to the standard Exponential variate by Logistic(0,1)  -log(exp(-Exponential(1))/(1+exp(-Exponential(1)))).

• 

The logistic variate with location parameter 0 and scale parameter b is related to two independent Gumbel variates G1 and G2 by Logistic(0,b) ~ G1 - G2.

• 

The standardized logistic variate is related to the Pareto variate with location parameter a and shape parameter c by Logistic(0,1)  logParetoa&comma;cac1.

• 

The standardized logistic variate is related to the Power variate with scale parameter 1 and shape parameter c by Logistic(0,1) ~ -log(Power(1,c)^(-c)-1).

• 

Note that the Logistic command is inert and should be used in combination with the RandomVariable command.

Examples

withStatistics&colon;

XRandomVariableLogistica&comma;b&colon;

PDFX&comma;u

&ExponentialE;uabb1+&ExponentialE;uab2

(1)

PDFX&comma;0.5

&ExponentialE;0.51.abb1.+&ExponentialE;0.51.ab2

(2)

MeanX

a

(3)

VarianceX

b2π23

(4)

References

  

Evans, Merran; Hastings, Nicholas; and Peacock, Brian. Statistical Distributions. 3rd ed. Hoboken: Wiley, 2000.

  

Johnson, Norman L.; Kotz, Samuel; and Balakrishnan, N. Continuous Univariate Distributions. 2nd ed. 2 vols. Hoboken: Wiley, 1995.

  

Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.

See Also

Statistics

Statistics[Distributions]

Statistics[RandomVariable]