Gausselim - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

Gausselim

inert Gaussian elimination

Gaussjord

inert Gauss Jordan elimination

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

Gausselim(A) mod p

Gaussjord(A) mod p

Gausselim(A, 'r', 'd') mod p

Gaussjord(A, 'r', 'd') mod p

Parameters

A

-

Matrix

'r'

-

(optional) for returning the rank of A

'd'

-

(optional) for returning the determinant of A

'p'

-

an integer, the modulus

Description

• 

The Gausselim and Gaussjord functions are placeholders for representing row echelon forms of the rectangular matrix A.

• 

The commands Gausselim(A,...) mod p and Gassjord(A,...) mod p apply Gaussian elimination with row pivoting to A, a rectangular matrix over a finite ring of characteristic p. This includes finite fields, GF(p), the integers mod p, and GF(p^k) where elements of GF(p^k) are expressed as polynomials in RootOfs.

• 

The result of the Gausselim command is a an upper triangular matrix B in row echelon form.  The result of the Gaussjord command is also an upper triangular matrix B but in reduced row echelon form.

• 

If an optional second parameter is specified, and it is a name, it is assigned the rank of the matrix A.

• 

If A is an m by n matrix with mn and if an optional third parameter is also specified, and it is a name, it is assigned the determinant of the matrix A[1..m,1..m].

Examples

AMatrix1,2,3,1,3,0,1,4,3

A123130143

(1)

GausselimAmod5

123012001

(2)

BArrayToolsConcatenate2,A,LinearAlgebraIdentityMatrix3

B123100130010143001

(3)

GaussjordBmod5

100411010203001131

(4)

InverseAmod5

411203131

(5)

aliasa=RootOfx4+x+1mod2:

AMatrix1,a,a2,a,a2,a3,a2,a3,1

A1aa2aa2a3a2a31

(6)

GausselimA,r,dmod2

1aa200a000

(7)

r

2

(8)

d

0

(9)

See Also

Det

Inverse

LinearAlgebra[GaussianElimination]

LinearAlgebra[Modular]

mod

Modular[RowReduce]

 


Download Help Document