Solvable - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Query[Solvable] - check if a Lie algebra is solvable

Calling Sequences

     Query(Alg, "Solvable")

     Query(S, "Solvable")

Parameters

     Alg     - (optional) name or string, the name of an initialized Lie algebra

     S       - a list of vectors defining a basis for a subalgebra

 

Description

Examples

Description

• 

A Lie algebra 𝔤 is solvable if the k-th ideal 𝒟kg in the derived series for 𝔤  is 0 for some k0. Every nilpotent Lie algebra is solvable.

• 

Query(Alg, "Solvable") returns true if Alg is a solvable Lie algebra and false otherwise. If the algebra is unspecified, then Query is applied to the current algebra.

• 

Query(S, "Solvable") returns true if the subalgebra S is a solvable Lie algebra and false otherwise.

• 

The command Query is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form Query(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Query(...).

Examples

withDifferentialGeometry:withLieAlgebras:

 

Example 1.

We initialize three different Lie algebras.

L1_DGLieAlgebra,Alg1,3,2,3,1,1

L1e2,e3=e1

(2.1)

L2_DGLieAlgebra,Alg2,3,1,3,1,1,2,3,1,1,2,3,2,1

L2e1,e3=e1,e2,e3=e1+e2

(2.2)

L3_DGLieAlgebra,Alg3,3,1,2,1,1,1,3,2,2,2,3,3,1

L3e1,e2=e1,e1,e3=2e2,e2,e3=e3

(2.3)

DGsetupL1,x,a:DGsetupL2,y,b:DGsetupL3,z,c:

 

Alg1 and Alg2 are solvable but Alg3 is not. (Alg1 is actually nilpotent while Alg3 is semisimple.)

Alg3 > 

QueryAlg1,Solvable

true

(2.4)
Alg1 > 

QueryAlg2,Solvable

true

(2.5)
Alg2 > 

QueryAlg3,Solvable

false

(2.6)

 

The subalgebra S  = spanz1, z2 is a solvable subalgebra of Alg3. (The algebra Alg3 is sl2, ℝ and S is a Borel subalgebra.)

Alg3 > 

Queryz1,z2,Solvable

true

(2.7)

See Also

DifferentialGeometry

LieAlgebras

Query