FormInnerProduct - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Tensor[FormInnerProduct] - compute the inner product of two forms with respect to a given metric tensor

Calling Sequences

     FormInnerProduct(g, α, β,keyword)

     FormInnerProduct(g, g1, α1, β1, keyword)

Parameters

   g         - a covariant metric tensor on a manifold or on a Lie algebra with frame name, e.g., M

   α, β        - two forms (of the same degree) on M, or lists of such

   α1, β1     - two forms (of the same degree) on M, or lists of such, where M is a Lie algebra with coefficients in a representation space V

   g1                - a covariant metric tensor on the representation space V

      keyword    - the keyword argument inversemetric = h, where h is the inverse of the metric g.

 

Description

Examples

Description

• 

 Let  g = gij dxi dxj and let h = hijxixj be the inverse metric. If α= ai dxi and β= bj dxj are 1-forms, then their inner product is α, β = hijai bj. For monomial p-forms  α1α2  ...  αp and β1β2  ...  βp , the inner product is given by

 α1α2  ...  αp , β1β2  ...  βp = detαr βs.

This formula is extended by bi-linearity to give the general formula for the inner product of a pair of pforms.

• 

In the special case of forms defined on a Lie algebra with coefficients x and y in a representation, the inner product formula for monomials becomes

x α1α2  ...  αp , y β1β2  ...  βp=  gVx,y det αr βs

where x, y ϵ V and gV is the inner product on V. 

Examples

withDifferentialGeometry:withTensor:withLieAlgebras:

 

First define a manifold M with local coordinates x,y,z and define a metric on M.

DGsetupx,y,z,M:

M > 

gevalDGadx&tdx+bdy&tdy+cdz&tdz

g:=adxdx+bdydy+cdzdz

(2.1)

 

Example 1.

Compute the inner product of two 1-forms

M > 

α1evalDGa1dx+a2dy+a3dz

α1:=a1dx+a2dy+a3dz

(2.2)
M > 

β1evalDGb1dx+b2dy+b3dz

β1:=b1dx+b2dy+b3dz

(2.3)
M > 

FormInnerProductg,α1,β1

a1b1a+a2b2b+a3b3c

(2.4)

 

Example 2.

Compute the inner products of a list of monomial 2-forms.

M > 

g2evalDGadx&tdx+bdy&tdy+cdz&tdz

g2:=adxdx+bdydy+cdzdz

(2.5)
M > 

ΩevalDGdx&wdy,dx&wdz,dy&wdz

Ω:=dxdy,dxdz,dydz

(2.6)
M > 

FormInnerProductg2,Ω,Ω

 

Compute the inner product of a pair of 2-forms.

M > 

α2evalDG2dx&wdy+dy&wdz

α2:=2dxdy+dydz

(2.7)
M > 

β2evalDG3dx&wdz+4dy&wdz

β2:=3dxdz+4dydz

(2.8)
M > 

FormInnerProductg2,α2,α2

4ab+1bc

(2.9)

 

Example 3.

In this example we compute the inner products of forms defined on a Lie algebra with coefficients in a representation.

M > 

LDSimpleLieAlgebraDataso(4),so4

LD:=e1,e2=e4,e1,e3=e5,e1,e4=e2,e1,e5=e3,e2,e3=e6,e2,e4=e1,e2,e6=e3,e3,e5=e1,e3,e6=e2,e4,e5=e6,e4,e6=e5,e5,e6=e4

(2.10)
M > 

DGsetupLD

Lie algebra: so4

(2.11)
so4 > 

DGsetupx1,x2,x3,x4,V

frame name: V

(2.12)
so4 > 

ρStandardRepresentationso4,representationspace=V

ρ:=e1,0−100100000000000,e2,00−10000010000000,e3,000−1000000001000,e4,000000−1001000000,e5,0000000−100000100,e6,00000000000−10010

(2.13)
V > 

DGsetupρ,so4V,O,o

Lie algebra with coefficients: so4V

(2.14)
so4V > 

gKillingFormso4V

g:=4o1o14o2o24o3o34o4o44o5o54o6o6

(2.15)
so4V > 

hInverseMetricg

h:=14O1O114O2O214O3O314O4O414O5O514O6O6

(2.16)
so4V > 

gVevalDGdx1&tdx1+dx2&tdx2+dx3&tdx3+dx4&tdx4

gV:=dx1dx1+dx2dx2+dx3dx3+dx4dx4

(2.17)

 

Compute the inner product of a pair of zero forms.

V > 

FormInnerProductg,gV,ax1+bx2,cx1+dx2

ac+bd

(2.18)

 

Compute the inner product of a pair of 1-forms.

V > 

FormInnerProductg,gV,x1o1,x1o3

0

(2.19)
so4V > 

FormInnerProductg,gV,x2o1,x1o1

0

(2.20)
so4V > 

FormInnerProductg,gV,x2o2,x2o2

14

(2.21)
V > 

FormInnerProductg,gV,x2o1&wo2,x2o1&wo2

116

(2.22)

 

Compute the length of a 2-form.

V > 

α3evalDGax2o1&wo2+bx4o1&wo3+cxo2&wo5

α3:=ax2o1o2+bx4o1o3+cxo2o5

(2.23)
so4V > 

sqrtFormInnerProductg,gV,α3,α3

14a2+b2

(2.24)

See Also

DifferentialGeometry

Tensor

ContractIndices

InverseMetric

RaiseLowerIndices

SpinorInnerProduct

TensorInnerProduct