DifferentialGeometry/Tensor/RaiseLowerSpinorIndices - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : DifferentialGeometry/Tensor/RaiseLowerSpinorIndices

Tensor[RaiseLowerSpinorIndices] - raise or lower a list of spinor indices using epsilon spinors

Calling Sequences

     RaiseLowerSpinorIndices(S, Indices)

Parameters

   S       - a spinor or spinor-tensor

   Indices - a list of integers, referring to the arguments of S

 

Description

Examples

See Also

Description

• 

Spinor indices are raised and lowed using the epsilon spinor.

• 

Indices are lowered by contraction with the first index of the covariant epsilon spinor and raised by contraction with the second index of the contravariant epsilon spinor. n terms of components:

SA=SBεBA,   SA=εABSB.

• 

The command RaiseLowerSpinorIndices(S, Indices) will raise or lower the indices of the spinor S given by the list Indices.

• 

Unlike the command RaiseLowerIndices for raising and lowering tensor indices, no metric need be specified.

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form RaiseLowerSpinorIndices(...) only after executing the commands with(DifferentialGeometry); with(Tensor); in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-RaiseLowerSpinorIndices.

Examples

withDifferentialGeometry:withTensor:

 

Example 1.

First create a vector bundle M with base coordinates x,y,z,t and fiber coordinates z1, z2, w1, w2.

DGsetupx,y,z,t,z1,z2,w1,w2,M

frame name: M

(2.1)

 

Define a contravariant rank 1 spinor S1 and lower its indices, that is, convert it to a covariant rank 1 spinor T1.

M > 

S1evalDGaD_z1+bD_z2

S1:=aD_z1+bD_z2

(2.2)
M > 

T1RaiseLowerSpinorIndicesS1,1

T1:=bdz1+adz2

(2.3)

 

Define the covariant epsilon spinor ε1 and check that this result coincides with the contraction of ε1 and S1.

M > 

ε1EpsilonSpinorcov,spinor

ϵ1:=dz1dz2dz2dz1

(2.4)
M > 

ContractIndicesε1,S1,1,1

bdz1+adz2

(2.5)

 

Convert T1 back to a contravariant rank 1 spinor, recovering S1.

M > 

RaiseLowerSpinorIndicesT1,1

aD_z1+bD_z2

(2.6)

 

Example 2.

Define a rank 4 spinor-tensor S2 and raise its 2nd index and lower its 4th index.

M > 

S2evalDGaD_t&tdz1&tD_w2&tD_w1+bD_x&tdz2&tD_w1&tD_w2

S2:=bD_xdz2D_w1D_w2+aD_tdz1D_w2D_w1

(2.7)
M > 

RaiseLowerSpinorIndicesS2,2,4

bD_xD_z1D_w1dw1aD_tD_z2D_w2dw2

(2.8)
M > 

See Also

DifferentialGeometry, Tensor, ContractIndices, EpsilonSpinor, RaiseLowerIndices