DifferentialGeometry/Tensor/SpinConnection - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : DifferentialGeometry/Tensor/SpinConnection

Tensor[SpinConnection] - compute the spin connection defined by a solder form

Calling Sequences

     SpinConnection(σ)

Parameters

    σ   - a solder form

 

Description

Examples

See Also

Description

• 

The DifferentialGeometry Tensor package supports general computations with connections on vector bundles (Connection, Example 3; CovariantDerivative, Example 3; DirectionalCovariantDerivative, Example 3; and CurvatureTensor, Example 3).  This functionality naturally provides for covariant differentiation of spinors.

• 

The command SpinConnection(σ) computes the connection compatible with the solder form σ and the epsilon spinors.

• 

Given a solder form σ, let g be the associated metric. There is a unique spin connection  such that σ=0 and ε=0, where ε denotes either of the epsilon spinors (EpsilonSpinor). In the definition of σ the tensorial argument (or index) is covariantly differentiated with respect to the Christoffel connection for g. It is this connection  which is computed by the command SpinConnection(sigma).

• 

Note that a generic connection for the differentiation of spinors can be constructed using the Connection command.

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form SpinConnection(...) only after executing the commands with(DifferentialGeometry); with(Tensor); in that order.  It can always be used in the long form DifferentialGeometry:-Tensor:-SpinConnection.

Examples

withDifferentialGeometry:withTensor:

 

Example 1.

First create a vector bundle EM with base coordinates t,x,y,z and fiber coordinates z1, z2, w1, w2.

DGsetupt,x,y,z,z1,z2,w1,w2,E

frame name: E

(2.1)

 

Define a spacetime metric g on M.

E > 

gevalDGx4dt&tdtdx&tdxdy&tdydz&tdz

gx4dtdtdxdxdydydzdz

(2.2)

 

Define an orthonormal frame on M with respect to the metric g.

E > 

FevalDG1x2D_t,D_x,D_y,D_z

F1x2D_t,D_x,D_y,D_z

(2.3)

 

Calculate the solder form σ from the frame F.

E > 

σSolderFormF

σx222dtD_z1D_w1+x222dtD_z2D_w2+22dxD_z1D_w2+22dxD_z2D_w1I22dyD_z1D_w2+I22dyD_z2D_w1+22dzD_z1D_w122dzD_z2D_w2

(2.4)

 

Calculate the spin-connection for the solder form σ.

E > 

Γ2SpinConnectionσ

Γ2xD_z1dz2dt+xD_z2dz1dt+xD_w1dw2dt+xD_w2dw1dt

(2.5)

 

Example 2.

Define a rank 1 spinor φ. Calculate the covariant derivative of φ. Calculate the directional derivatives of φ.

E > 

φevalDGt2D_z11yD_z2

φt2D_z11yD_z2

(2.6)
E > 

CovariantDerivativeφ,Γ2

x+2tyyD_z1dt+xt2D_z2dt+1y2D_z2dy

(2.7)
E > 

DirectionalCovariantDerivativeD_x,φ,Γ2

0D_z1

(2.8)
E > 

DirectionalCovariantDerivativeD_y,φ,Γ2

1y2D_z2

(2.9)
E > 

DirectionalCovariantDerivativeD_z,φ,Γ2

0D_z1

(2.10)
E > 

DirectionalCovariantDerivativeyD_t,φ,Γ2

x+2tyD_z1+xyt2D_z2

(2.11)

 

Example 3.

Check that the covariant derivative of σ vanishes. Because σ is a spin-tensor, two connections are required. Calculate the Christoffel connection for the metric g.

E > 

Γ1Christoffelg

Γ12xD_tdtdx+2xD_tdxdt+2x3D_xdtdt

(2.12)
E > 

CovariantDerivativeσ,Γ1,Γ2

0dtD_z1D_z1dt

(2.13)

 

Define an epsilon spinor and check that its covariant derivative vanishes.

E > 

EpsEpsilonSpinorcov,spinor

Epsdz1dz2dz2dz1

(2.14)
E > 

CovariantDerivativeEps,Γ2

0dz1dz1dt

(2.15)

 

Example 4.

Calculate the curvature spin-tensor for the spin-connection Gamma2.

E > 

FCurvatureTensorΓ2

FD_z1dz2dtdx+D_z1dz2dxdtD_z2dz1dtdx+D_z2dz1dxdtD_w1dw2dtdx+D_w1dw2dxdtD_w2dw1dtdx+D_w2dw1dxdt

(2.16)

 

The curvature tensor R for the Christoffel connection can be expressed in terms of the curvature spin-tensor F and the bivector solder forms S by the identity

 

2 Ri jhk=Si jA BFA Bhk + Si jA' B'FA' B'hk.    (*)

 

Let's check this formula for the Christoffel connection Gamma1 and the spin-connection Gamma2. First calculate the curvature tensor for Gamma1.

E > 

RCurvatureTensorΓ1

R2x2D_tdxdtdx+2x2D_tdxdxdt2x2D_xdtdtdx+2x2D_xdtdxdt

(2.17)

 

Calculate the complex conjugate of the spinor curvature F.

E > 

barFConjugateSpinorF

barFD_z1dz2dtdx+D_z1dz2dxdtD_z2dz1dtdx+D_z2dz1dxdtD_w1dw2dtdx+D_w1dw2dxdtD_w2dw1dtdx+D_w2dw1dxdt

(2.18)

 

Calculate the bivector soldering forms S and barS.

E > 

SBivectorSolderFormσ,spinor,indextype=con,cov,cov,con

S1x2D_tdxdz1D_z2+1x2D_tdxdz2D_z1+Ix2D_tdydz1D_z2Ix2D_tdydz2D_z1+1x2D_tdzdz1D_z11x2D_tdzdz2D_z2+x2D_xdtdz1D_z2+x2D_xdtdz2D_z1ID_xdydz1D_z1+ID_xdydz2D_z2D_xdzdz1D_z2+D_xdzdz2D_z1+Ix2D_ydtdz1D_z2Ix2D_ydtdz2D_z1+ID_ydxdz1D_z1ID_ydxdz2D_z2ID_ydzdz1D_z2ID_ydzdz2D_z1+x2D_zdtdz1D_z1x2D_zdtdz2D_z2+D_zdxdz1D_z2D_zdxdz2D_z1+ID_zdydz1D_z2+ID_zdydz2D_z1

(2.19)
E > 

barSBivectorSolderFormσ,barspinor,indextype=con,cov,cov,con

barS1x2D_tdxdw1D_w2+1x2D_tdxdw2D_w1Ix2D_tdydw1D_w2+Ix2D_tdydw2D_w1+1x2D_tdzdw1D_w11x2D_tdzdw2D_w2+x2D_xdtdw1D_w2+x2D_xdtdw2D_w1+ID_xdydw1D_w1ID_xdydw2D_w2D_xdzdw1D_w2+D_xdzdw2D_w1Ix2D_ydtdw1D_w2+Ix2D_ydtdw2D_w1ID_ydxdw1D_w1+ID_ydxdw2D_w2+ID_ydzdw1D_w2+ID_ydzdw2D_w1+x2D_zdtdw1D_w1x2D_zdtdw2D_w2+D_zdxdw1D_w2D_zdxdw2D_w1ID_zdydw1D_w2ID_zdydw2D_w1

(2.20)

 

The first term on the right-hand side of (*) is

E > 

R1ContractIndicesS,F,3,1,4,2

R12x2D_tdxdtdx+2x2D_tdxdxdt2x2D_xdtdtdx+2x2D_xdtdxdt+2ID_ydzdtdx2ID_ydzdxdt2ID_zdydtdx+2ID_zdydxdt

(2.21)

 

The second term on the right-hand side of (*) is

E > 

R2ContractIndicesbarS,barF,3,1,4,2

R22x2D_tdxdtdx+2x2D_tdxdxdt2x2D_xdtdtdx+2x2D_xdtdxdt2ID_ydzdtdx+2ID_ydzdxdt+2ID_zdydtdx2ID_zdydxdt

(2.22)
E > 

LHS2&multR

LHS4x2D_tdxdtdx+4x2D_tdxdxdt4x2D_xdtdtdx+4x2D_xdtdxdt

(2.23)
E > 

RHSR1&plusR2

RHS4x2D_tdxdtdx+4x2D_tdxdxdt4x2D_xdtdtdx+4x2D_xdtdxdt

(2.24)
E > 

LHS&minusRHS

0D_tdtdtdt

(2.25)

See Also

DifferentialGeometry, Tensor, BivectorSolderForm, Connection, Physics[Christoffel], CovariantDerivative, Physics[D_], DirectionalCovariantDerivative, CurvatureTensor, Physics[Riemann], EnergyMomentumTensor, EpsilonSpinor, MatterFieldEquations