ObservabilityMatrix - Maple Help

Online Help

All Products    Maple    MapleSim


DynamicSystems

  

ObservabilityMatrix

  

compute the observability matrix

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

ObservabilityMatrix( sys )

ObservabilityMatrix( Amat, Cmat )

Parameters

sys

-

System; state-space system

Amat

-

Matrix; state-space matrix A

Cmat

-

Matrix; state-space matrix C

Description

• 

The ObservabilityMatrix command computes the observability matrix of a state-space system.

• 

If the parameter sys is a state-space System, then the A and C Matrices are sys:-a and sys:-c, respectively.

• 

If the parameters Amat and Cmat are Matrices, then they are the A and C Matrices, respectively.

• 

The observability matrix has dimensions o*n x n, where n is the number of states (dimension of A) and o is the number of outputs (row dimension of C) It has the form <<C>, <C . A>, <C . A^2>, <C . A^3>, ..., <C . A^(n-1)>>.

Examples

withDynamicSystems&colon;

withLinearAlgebra&colon;

sys1StateSpace1s2+s+10&colon;

sys1:-a,sys1:-c

01−10−1,10

(1)

ObservabilityMatrixsys1

1001

(2)

sys2StateSpace3|1|0&comma;5|0|1&comma;3|0|0&comma;1&comma;2&comma;3&comma;1|0|0&comma;0&colon;

sys2:-a,sys2:-c

−310−501−300,100

(3)

ObservabilityMatrixsys2:-a&comma;sys2:-c

100−3104−31

(4)

sys3StateSpaceDiagonalMatrixa1&comma;a2&comma;a3&comma;0|0&comma;b1|0&comma;0|b2&comma;c1|0|0&comma;0|0|c3&comma;0|0&comma;0|0&colon;

sys3:-a,sys3:-c

a1000a2000a3,c10000c3

(5)

ObservabilityMatrixsys3

c10000c3a1c10000a3c3a12c10000a32c3

(6)

See Also

DynamicSystems

DynamicSystems[ControllabilityMatrix]

DynamicSystems[Controllable]

DynamicSystems[Grammians]

DynamicSystems[Observable]

DynamicSystems[SSTransformation]