Cauchy - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Statistics[Distributions]

  

Cauchy

  

Cauchy distribution

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

Cauchy(a, b)

CauchyDistribution(a, b)

Parameters

a

-

location parameter

b

-

scale parameter

Description

• 

The Cauchy distribution is a continuous probability distribution with probability density function given by:

ft=1πb1+ta2b2

  

subject to the following conditions:

a::real,0<b

• 

The Cauchy distribution does not have any defined moments or cumulants.

• 

The Cauchy variate Cauchy(a,b) is related to the standardized variate Cauchy(0,1) by Cauchy(a,b) ~ a + b * Cauchy(0,1).

• 

The ratio of two independent unit Normal variates N and M is distributed according to the standard Cauchy variate: Cauchy(0,1) ~ N / M

• 

The standard Cauchy variate Cauchy(0,1) is a special case of the StudentT variate with one degree of freedom: Cauchy(0,1) ~ StudentT(1).

• 

Note that the Cauchy command is inert and should be used in combination with the RandomVariable command.

Examples

withStatistics&colon;

XRandomVariableCauchya&comma;b&colon;

PDFX&comma;u

1πb1+ua2b2

(1)

PDFX&comma;0.5

0.3183098861b1.+0.51.a2b2

(2)

MeanX

undefined

(3)

VarianceX

undefined

(4)

References

  

Evans, Merran; Hastings, Nicholas; and Peacock, Brian. Statistical Distributions. 3rd ed. Hoboken: Wiley, 2000.

  

Johnson, Norman L.; Kotz, Samuel; and Balakrishnan, N. Continuous Univariate Distributions. 2nd ed. 2 vols. Hoboken: Wiley, 1995.

  

Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics.6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.

See Also

Statistics

Statistics[Distributions]

Statistics[RandomVariable]