exp - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Units[Natural]

 exp
 exponential function

Calling Sequence

 exp(expr) ${ⅇ}^{\mathrm{expr}}$

Parameters

 expr - algebraic expression

Description

 • In the Natural Units environment, the arguments for the exponential functions can be unit-free, or multiplied by a unit with the dimension logarithmic_gain. An error is returned if the dimension of the argument is not one of logarithmic gain.
 • By default, the units of the object returned are a ratio of wave numbers (inverse length). Using energy conversions, this ratio is proportional to a voltage ratio and its square is proportional to a power ratio.
 • Note that the first calling sequence must be entered in 2-D math notation by using either the palettes or command completion. The exponential ${e}^{x}$ will not be recognized if it is entered manually.
 • For other properties, see the global function exp.

Examples

 > $\mathrm{with}\left(\mathrm{Units}\left[\mathrm{Natural}\right]\right):$
 > $\mathrm{ratio}≔\mathrm{exp}\left(15.5\mathrm{dB}\right)$
 ${\mathrm{ratio}}{≔}{5.956621435}{}⟦\frac{{m}{}\left({\mathrm{base}}\right)}{{m}}⟧$ (1)
 > $\mathrm{convert}\left(\mathrm{ratio},'\mathrm{units}',\frac{\mathrm{volts}}{\mathrm{volts}\left(\mathrm{base}\right)},'\mathrm{energy}'\right)$
 ${5.956621435}{}⟦\frac{{V}}{{V}{}\left({\mathrm{base}}\right)}⟧$ (2)
 > $\mathrm{convert}\left({\mathrm{ratio}}^{2},'\mathrm{units}',\frac{\mathrm{watt}}{\mathrm{watt}\left(\mathrm{base}\right)},'\mathrm{energy}'\right)$
 ${35.48133892}{}⟦\frac{{W}}{{W}{}\left({\mathrm{base}}\right)}⟧$ (3)
 > $\mathrm{log10}\left(\right)$
 ${0.7750000000}{}⟦{\mathrm{Np}}⟧$ (4)
 > $\mathrm{convert}\left(,'\mathrm{units}',\mathrm{dB}\right)$
 ${6.731564469}{}⟦{\mathrm{dB}}⟧$ (5)
 > $\mathrm{ln}\left(\right)$
 ${1.784503447}{}⟦{\mathrm{Np}}⟧$ (6)
 > $\mathrm{convert}\left(,'\mathrm{units}',\mathrm{dB}\right)$
 ${15.50000000}{}⟦{\mathrm{dB}}⟧$ (7)
 > $\mathrm{ln}\left(\mathrm{exp}\left(15.5\mathrm{dB}\right)\right)$
 ${1.784503447}{}⟦{\mathrm{Np}}⟧$ (8)