projection - Maple Help

# Online Help

###### All Products    Maple    MapleSim

geom3d

 projection
 find the projection of an object on the other object

 Calling Sequence projection(Q, A, l) projection(Q, A, p) projection(Q, seg, p) projection(Q, l, p)

Parameters

 Q - the name of the object to be created A - point seg - line segment or a directed line segment l - line p - plane

Description

 • The routine finds the projection Q of an object on the other object.
 • For a detailed description of the object to be created Q, use the routine detail (e.g., detail(Q))
 • The command with(geom3d,projection) allows the use of the abbreviated form of this command.

Examples

 > $\mathrm{with}\left(\mathrm{geom3d}\right):$

Find the equations of the projection of the line $\frac{x}{2}-\frac{1}{2}=-y-1$=$\frac{z}{4}-\frac{3}{4}$ on the plane $x+2y+z$=6

 > $\mathrm{line}\left(l,\left[\mathrm{point}\left(o,1,-1,3\right),\left[2,-1,4\right]\right]\right):$
 > $\mathrm{plane}\left(p,x+2y+z=6,\left[x,y,z\right]\right):$
 > $\mathrm{projection}\left(\mathrm{l1},l,p\right)$
 ${\mathrm{l1}}$ (1)
 > $\mathrm{detail}\left(\mathrm{l1}\right)$
 $\begin{array}{ll}{\text{name of the object}}& {\mathrm{l1}}\\ {\text{form of the object}}& {\mathrm{line3d}}\\ {\text{equation of the line}}& \left[{\mathrm{_x}}{=}\frac{{5}}{{3}}{+}\frac{{4}{}{\mathrm{_t}}}{{3}}{,}{\mathrm{_y}}{=}\frac{{1}}{{3}}{-}\frac{{7}{}{\mathrm{_t}}}{{3}}{,}{\mathrm{_z}}{=}\frac{{11}}{{3}}{+}\frac{{10}{}{\mathrm{_t}}}{{3}}\right]\end{array}$ (2)

 See Also