tensor(deprecated)/Killing_eqns - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

Home : Support : Online Help : tensor(deprecated)/Killing_eqns

tensor

  

Killing_eqns

  

compute component expressions for Killings equations

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

Killing_eqns( T, coord, Cf2)

Parameters

T

-

symmetric covariant tensor

coord

-

list of coordinate names

Cf2

-

Christoffel symbols of the second kind

Description

Important: The tensor package has been deprecated. Use the superseding packages DifferentialGeometry and Physics instead.

• 

The function Killing_eqns(T, coord, Cf2 ) computes the expressions for Killing's equations for each component of the totally symmetric covariant tensor T.  Specifically, the symmetric part of the covariant derivative of T is computed and returned as a tensor_type. The components of T satisfy Killing's equations if all of the components of the result are zero.  Note that the rank of the result is one more than that of T.

• 

This routine is useful in two ways:  first, as a means of verifying that a tensor satisfies Killing's equations, and second, as a way of generating the differential equations for any unknown components of a symmetric tensor which is to satisfy Killing's equations.

• 

T must be of rank 1 or greater.  If T is of second rank or more, the component array of T must use Maple's symmetric indexing function (since T must be symmetric).

• 

Cf2 should be indexed using the cf2 indexing function provided by the tensor package.  It can be computed using the Christoffel2 routine.

• 

Simplification:  This routine uses the `tensor/cov_diff/simp` and `tensor/lin_com/simp` routines for simplification purposes.  The simplification routines are used indirectly by the symmetrize and cov_diff procedures as they are called by Killing_eqns.  By default, `tensor/cov_diff/simp` and `tensor/lin_com/simp` are initialized to the `tensor/simp` routine.  It is recommended that these routines be customized to suit the needs of the particular problem.

Examples

Important: The tensor package has been deprecated. Use the superseding packages DifferentialGeometry and Physics instead.

withtensor:

Generate the Killing equation expressions for an arbitrary vector in the geometry of Euclidean 3-space using polar coordinates: First, compute the Christoffel symbols of the second kind:

coordr,θ,φ:

g_comptsarraysymmetric,sparse,1..3,1..3,1,1=1,2,2=r2,3,3=r2sinθ2:

gcreate1,1,evalg_compts

gtableindex_char=−1,−1,compts=1000r2000r2sinθ2

(1)

ginvinvertg,detg:

d1gd1metricg,coord:d2gd2metricd1g,coord:

Cf1Christoffel1d1g:

Cf2Christoffel2ginv,Cf1:

Next, define the arbitrary vector field:

Vcreate1,arrayv1r,θ,φ,v2r,θ,φ,v3r,θ,φ

Vtableindex_char=−1,compts=v1r,θ,φv2r,θ,φv3r,θ,φ

(2)

Now compute the Killing equation expressions:

KVKilling_eqnsV,coord,Cf2

KVtableindex_char=−1,−1,compts=rv1r,θ,φθv1r,θ,φrrv2r,θ,φr+2v2r,θ,φ2rφv1r,θ,φr+rv3r,θ,φr2v3r,θ,φ2rθv1r,θ,φrrv2r,θ,φr+2v2r,θ,φ2rθv2r,θ,φ+rv1r,θ,φφv2r,θ,φ2cotθv3r,θ,φ+θv3r,θ,φ2φv1r,θ,φr+rv3r,θ,φr2v3r,θ,φ2rφv2r,θ,φ2cotθv3r,θ,φ+θv3r,θ,φ2φv3r,θ,φ+rsinθ2v1r,θ,φ+sin2θv2r,θ,φ2

(3)

Now try it for an arbitrary symmetric 0, 2-tensor:

tarraysymmetric,1..3,1..3:

forito3doforjfromito3doti,jcatt,i,jr,θ,φenddoenddo;Tcreate1,1,evalt

t33r,θ,φ

Ttableindex_char=−1,−1,compts=t11r,θ,φt12r,θ,φt13r,θ,φt12r,θ,φt22r,θ,φt23r,θ,φt13r,θ,φt23r,θ,φt33r,θ,φ

(4)

KTKilling_eqnsT,coord,Cf2

KTtableindex_char=−1,−1,−1,compts=arraysymmetric,1..3,1..3,1..3,1,1,1=rt11r,θ,φ,1,1,2=2rt12r,θ,φr+θt11r,θ,φr4t12r,θ,φ3r,1,1,3=2rt13r,θ,φr+φt11r,θ,φr4t13r,θ,φ3r,1,2,1=2rt12r,θ,φr+θt11r,θ,φr4t12r,θ,φ3r,1,2,2=2r2t11r,θ,φ+rt22r,θ,φr+2θt12r,θ,φr4t22r,θ,φ3r,1,2,3=2cotθt13r,θ,φr+φt12r,θ,φr4t23r,θ,φ+θt13r,θ,φr+rt23r,θ,φr3r,1,3,1=2rt13r,θ,φr+φt11r,θ,φr4t13r,θ,φ3r,1,3,2=2cotθt13r,θ,φr+φt12r,θ,φr4t23r,θ,φ+θt13r,θ,φr+rt23r,θ,φr3r,1,3,3=2r2sinθ2t11r,θ,φ+sin2θt12r,θ,φr+2φt13r,θ,φr4t33r,θ,φ+rt33r,θ,φr3r,2,1,1=2rt12r,θ,φr+θt11r,θ,φr4t12r,θ,φ3r,2,1,2=2r2t11r,θ,φ+rt22r,θ,φr+2θt12r,θ,φr4t22r,θ,φ3r,2,1,3=2cotθt13r,θ,φr+φt12r,θ,φr4t23r,θ,φ+θt13r,θ,φr+rt23r,θ,φr3r,2,2,1=2r2t11r,θ,φ+rt22r,θ,φr+2θt12r,θ,φr4t22r,θ,φ3r,2,2,2=θt22r,θ,φ+2rt12r,θ,φ,2,2,3=φt22r,θ,φ34cotθt23r,θ,φ3+2θt23r,θ,φ3+2t13r,θ,φr3,2,3,1=2cotθt13r,θ,φr+φt12r,θ,φr4t23r,θ,φ+θt13r,θ,φr+rt23r,θ,φr3r,2,3,2=φt22r,θ,φ34cotθt23r,θ,φ3+2θt23r,θ,φ3+2t13r,θ,φr3,2,3,3=2rsinθ2t12r,θ,φ3+2sinθcosθt22r,θ,φ3+2φt23r,θ,φ34cotθt33r,θ,φ3+θt33r,θ,φ3,3,1,1=2rt13r,θ,φr+φt11r,θ,φr4t13r,θ,φ3r,3,1,2=2cotθt13r,θ,φr+φt12r,θ,φr4t23r,θ,φ+θt13r,θ,φr+rt23r,θ,φr3r,3,1,3=2r2sinθ2t11r,θ,φ+sin2θt12r,θ,φr+2φt13r,θ,φr4t33r,θ,φ+rt33r,θ,φr3r,3,2,1=2cotθt13r,θ,φr+φt12r,θ,φr4t23r,θ,φ+θt13r,θ,φr+rt23r,θ,φr3r,3,2,2=φt22r,θ,φ34cotθt23r,θ,φ3+2θt23r,θ,φ3+2t13r,θ,φr3,3,2,3=2rsinθ2t12r,θ,φ3+2sinθcosθt22r,θ,φ3+2φt23r,θ,φ34cotθt33r,θ,φ3+θt33r,θ,φ3,3,3,1=2r2sinθ2t11r,θ,φ+sin2θt12r,θ,φr+2φt13r,θ,φr4t33r,θ,φ+rt33r,θ,φr3r,3,3,2=2rsinθ2t12r,θ,φ3+2sinθcosθt22r,θ,φ3+2φt23r,θ,φ34cotθt33r,θ,φ3+θt33r,θ,φ3,3,3,3=φt33r,θ,φ+2rsinθ2t13r,θ,φ+sin2θt23r,θ,φ

(5)

See Also

tensor(deprecated)

tensor(deprecated)/cov_diff

tensor(deprecated)[Christoffel2]

tensor(deprecated)[simp]

tensor(deprecated)[symmetrize]

 


Download Help Document