Overview - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Mozilla Firefox.

Online Help

All Products    Maple    MapleSim


int

definite and indefinite integration

 

Calling Sequence

Parameters

Description

Examples

Details

Calling Sequence

int(expression,x, options)

expressionⅆx

int(expression,x=a..b, options)

abexpressionⅆx

int(expression, [x, y, ...], options)

expressionⅆxⅆy

int(expression, [x = a..b, y = c..d, ...], options)

cdabexpressionⅆxⅆy

Parameters

expression

-

algebraic expression; integrand

x, y

-

names; variables of integration

a, b, c, d

-

endpoints of interval on which integral is taken

options

-

(optional) various options to control the type of integration performed. For example, numeric=true will perform numeric instead of symbolic integration. See int/details for more options.

Description

• 

The int(expression, x) calling sequence computes an indefinite integral of the expression with respect to the variable x. Note: No constant of integration appears in the result.

• 

The int(expression, x = a..b) calling sequence computes the definite integral of the expression with respect to the variable x on the interval from a to b.

• 

The int(expression, [ranges or variables]) calling sequence computes the iterated definite integral of the expression with respect to the variables or ranges in the list in the order they appear in the list. Note: The notation int(expression, [x = a..b, y = c..d]) is equivalent to int(int(expression, x = a..b), y = c..d) except that the single call to int accounts for the range of the outer variables (via assumptions) when computing the integration with respect to the inner variables.

• 

You can enter the command int using either the 1-D or 2-D calling sequence.  For example, int(f,x) is equivalent to fⅆx.

• 

If any of the integration limits of a definite integral are floating-point numbers (e.g. 0.0, 1e5 or an expression that evaluates to a float, such as exp(-0.1)), then int computes the integral using numerical methods if possible (see evalf/Int). Symbolic integration will be used if the limits are not floating-point numbers unless the numeric=true option is given.

• 

If Maple cannot find a closed form expression for the integral (or the floating-point value for definite integrals with float limits), the function call is returned.

• 

Note: For information on the inert function, Int, see int/details.

Examples

No constant of integration appears in the result for indefinite integrals.

f7x3+3x2+5x:

intf,x

74x4+x3+52x2

(1)

intsinx,x

cosx

(2)

intxx31,x

lnx13lnx2+x+16+3arctan2x+1333

(3)

intexpx2,x

πerfx2

(4)

If Maple cannot find a closed form expression for the integral, the function call is returned.

intexpx2lnx,x

ⅇx2lnxⅆx

(5)

Compute definite integrals.

intsinx,x=0..π

2

(6)

intexpx2lnx,x=0..

πγ4πln22

(7)

intexpx2lnx2,x=0..

π5216+γ2π8+γπln22+πln222

(8)

An Elliptic integral

int1sqrt2t43t22,t=2..3

5EllipticF73,5555EllipticF22,555

(9)

A double integral

intxy2,x,y

x2y36

(10)

intxy2,x=0..y,y=2..2

325

(11)

If either of the integration limits are floating-point numbers, then int computes the integral using numerical methods.

intxy2,x=0...y,y=2.0..2

6.400000000

(12)

An integral with decimal limits using numerical methods:

intxx3+1,x=0.75..1.25

0.2459707569

(13)

To apply symbolic integration methods instead, use numeric=false:

intxx3+1,x=0.75..1.25,numeric=false

3arctan363ln136+ln72+3arctan323ln32

(14)

The option numeric=true or simply numeric may also be used to compute a numerical integral even with exact limits:

intxx3+1,x=34..54,numeric

0.2459707569

(15)

Details

  

For detailed information including:

• 

Numerical integration

• 

Integration involving Units

• 

Handling discontinuities

• 

Series expansions

• 

Integration over a complex interval

• 

Inert form of the int command, Int

  

see the int/details help page.

See Also

convert/rational

diff

evalf/Int

int/details

IntegrationTools

VectorCalculus

VectorCalculus[int]