Psi - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Psi

the Digamma and Polygamma functions

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

Psi(x)

Psi(n,x)

Parameters

x

-

expression

n

-

expression

Description

• 

Psi(x) is the digamma function,

• 

Psi(n, x) is the nth polygamma function, which is the nth derivative of the digamma function when n is a nonnegative integer.

• 

You can enter the command Psi using either the 1-D or 2-D calling sequence.

• 

If n is an integer greater than one, Psi(n) + gamma is a rational number. (gamma is Euler's constant.) For small values of n, Psi(n) computes as a sum of gamma and a rational number. To perform this computation for larger values of n, use expand.

• 

Psi(n, x) is extended to complex n, including negative integer indices, by the balanced polygamma formula of Espinosa and Moll

  

where  is the Hurwitz zeta function.

Examples

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Evaluating Psi(51) directly is faster than expanding and then evaluating.

(9)

(10)

(11)

Unlike the negapolygamma of Gosper, the balanced polygamma at  differs from lnGAMMA by a constant

(12)

References

  

Espinosa, O., and Moll, V. "A Generalized Polygamma Function." Integral Transforms and Special Functions, (April 2004): 101-115.

See Also

expand

GAMMA

initialfunctions

Zeta

 


Download Help Document